Expanding Applications for ML Through Research
As machine learning (ML) expands to more applications across all areas of compute and the wider technology agenda, our research continues to guide and inform this growth. Arm advanced hardware, software, and tools provide the energy efficiency and performance required to support increasingly complex algorithms in this rapidly evolving area.
Key Research Threads
Our research covers a wide range of topics that focus on developing the technology to power future machine learning solutions.
Hardware and Device Technology
- Hardware designs and accelerator microarchitectures
- ISA additions
- Emerging device technology
Model Design and Optimization
- Novel model architectures
- Emerging use cases
- AutoML and Neural Architecture Search
Edge-to-Cloud and ML Systems
- Distributed and on-device training
- Model security
- Model distribution
Latest Publications
Our researchers share Arm’s latest cutting-edge ML research at top-tier conferences and events.
Latest ML Research Blogs
Read more blogs on our community website.
Ensuring Your AI is Sure, Anywhere, Anytime
When developing ML applications, it’s important to define what we see and how well we it. Stochastic-YOLO adapts YOLOv3 architecture to generate uncertainty estimations by introducing stochasticity in the form of Monte Carlo Dropout, all while keeping efficiency in mind.
Efficient Bug Discovery for Hardware Verification
To design a machine containing no bugs, we must test every aspect, but even with a single one-second test, it would still take 1022 years. We use ML to efficiently identify bugs and see a 25% increase in efficiency over default verification workflow.