Expanding Applications for ML Through Research

As machine learning (ML) expands to more applications across all areas of compute and the wider technology agenda, our research continues to guide and inform this growth. Arm advanced hardware, software, and tools provide the energy efficiency and performance required to support increasingly complex algorithms in this rapidly evolving area. 

Key Research Threads

Our research covers a wide range of topics that focus on developing the technology to power future machine learning solutions.

Latest Publications

Our researchers share Arm’s latest cutting-edge ML research at top-tier conferences and events.

Explore Publications

Latest ML Research Blogs

Read more blogs on our community website.

Ensuring Your AI is Sure, Anywhere, Anytime

When developing ML applications, it’s important to define what we see and how well we it. Stochastic-YOLO adapts YOLOv3 architecture to generate uncertainty estimations by introducing stochasticity in the form of Monte Carlo Dropout, all while keeping efficiency in mind.

Using Multiple Labels Improves Neural Network Learning

Consider the problem of historical image ranking with the goal of accurately predicting the decade an image was taken. We use a standard classification loss function, while exploiting the ordinal information of the labels to classify them.

Efficient Bug Discovery for Hardware Verification

To design a machine containing no bugs, we must test every aspect, but even with a single one-second test, it would still take 1022 years. We use ML to efficiently identify bugs and see a 25% increase in efficiency over default verification workflow.

Explore the AI and Machine Learning Ecosystem at Arm

Learn More