Software Development Tools for Cortex-M4 Microcontrollers

Javier Orensanz, ARM
November 2010
Keil - MCU Tools from ARM

- Tailored to ARM Cortex™-M devices
 - Optimized Compiler, IDE, Debugger, and Debug/Trace Adapters
 - Support advanced Cortex-M and CoreSight technologies
 - RTOS and middleware optimized for Cortex-M3 and Cortex-M4

- Enable developers to:
 - Start projects faster
 - Device Database provides tool setup, start-up code, header files, flash algorithm, etc.
 - Write efficient DSP code
 - ARM Compiler optimized for Cortex-M4 SIMD instruction set
 - Verify and optimize software
 - ULINKpro with Streaming Trace provides Code Coverage and Performance Analyzer
Software Development Tools

Microcontroller Development Kit

Complete support for Cortex™-M, Cortex-R, and ARM7™/ARM9™ Devices

CMSIS COMPLIANT

ARM Cortex™ Microcontroller Software Interface Standard

MDK-ARM
Microcontroller Development Kit

ARM C/C++ Compiler
RTX RTOS
µVision
Device Database & IDE
µVision
Debugger & Analysis Tools
Device Peripheral Simulation

Examples and Templates

ULINK Debug Adapters

Debugger Run-Control
Debug Channel
Flash ROM
RAM
Real-Time Clock

ULINKPro

RTX and Real-Time Library

RTOS and middleware libraries for real-time and communication challenges

RTX RTOS Source Code
TCPnet Networking Suite
Flash File System
USB Device/Host/OTG
CAN Interface

Examples and Templates

The Architecture for the Digital World®
USING CORTEX-M4 FOR DIGITAL SIGNAL PROCESSING
Cortex MCU Software Standard

- Cortex Microcontroller Software Interface Standard (CMSIS)
 - Abstraction layer for all Cortex-M processor-based devices

- CMSIS 2.0: Cortex-M4 support for SIMD
- CMSIS-SVD: XML peripheral debug description

Benefits to the embedded developer
- Consistent software interfaces for silicon and middleware vendors
- Simplifies re-use across Cortex-M processor-based devices
- Reduces learning curve, development costs, and time-to-market
CMSIS DSP Library

- Collection of 61 algorithms
 - C Source Code, optimized for Cortex-M3 and Cortex-M4
 - For CMSIS compliant C Compilers (ARM/Keil, IAR, GCC)

- Basic Math Functions
 - Vector Multiplication
 - Vector Subtraction
 - Vector Addition
 - Vector Scale
 - Vector Shift
 - Vector Offset
 - Vector Negate
 - Vector Absolute
 - Vector Dot Product

- Fast Math Functions
 - Cosine
 - Sine
 - Square root of number

- Complex Math Functions
 - Complex conjugate
 - Complex dot product
 - Complex magnitude
 - Complex magnitude squared
 - Complex by complex multiplication
 - Complex by real multiplication

- Filters
 - Biquad Cascade IIR Filters Using Direct form I Structure
 - Finite Impulse Response (FIR) Filters
 - Convolution
 - Partial Convolution
 - Correlation
 - Finite Impulse Response (FIR) Decimation
 - Finite Impulse Response (FIR) Lattice Filters
 - Infinite Impulse Response (IIR) Lattice Filters
 - Biquad Cascade IIR 32x64 filter using Direct form I structure
 - Biquad Cascade IIR Filters Using a Direct form II Transposed Structure
 - Finite Impulse Response (FIR) Sparse Filters
 - Finite Impulse Response (FIR) Interpolation
 - Least Mean Square FIR Filter
 - Least Mean Square Normalized FIR Filter

- Matrix Functions
 - Matrix Addition
 - Matrix Initialization
 - Matrix Scale
 - Matrix Subtraction
 - Matrix Multiplication
 - Matrix Inverse
 - Matrix Transpose

- Transforms
 - Complex FFT Functions
 - Real FFT Functions
 - DCT Type IV Function

- Controller Functions
 - SineCosine
 - PID Motor Control
 - Vector park transform
 - Vector Inverse park transform
 - Vector Clarke transform
 - Vector Inverse Clarke transform

- Statistical Functions
 - Power
 - Root mean square (RMS)
 - Standard deviation
 - Variance
 - Maximum
 - Minimum
 - Mean

- Support Functions
 - Vector Copy
 - Vector Fill
 - Convert 8-bit Integer value
 - Convert 16-bit Integer value
 - Convert 32-bit Integer value
 - Convert 32-bit floating point value

- Interpolator Functions
 - Linear Interpolate Function
 - Bilinear Interpolate Function
DSP Library Performance

- Cortex-M4 SIMD + FPU
 - Fix point: ~2x faster
 - Floating point: ~10x faster

DSP Library Benchmark: Cortex-M3 vs. Cortex-M4

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Cortex-M3</th>
<th>Cortex-M4</th>
<th>Memory Access Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIR q15 fixed point</td>
<td>14,668</td>
<td>4,228</td>
<td>71%</td>
</tr>
<tr>
<td>PID q15 fixed point</td>
<td>1,908</td>
<td>1,040</td>
<td>45%</td>
</tr>
<tr>
<td>IIR q31 fixed point</td>
<td>10,345</td>
<td>6,948</td>
<td>33%</td>
</tr>
<tr>
<td>Matrix Mul fixed point</td>
<td>6,800</td>
<td>3,771</td>
<td>45%</td>
</tr>
<tr>
<td>Correlation floating point</td>
<td>168,031</td>
<td>15,235</td>
<td>91%</td>
</tr>
</tbody>
</table>

Cycles: smaller numbers are better

On Cortex-M4: uses SIMD & FPU instructions
DSP Data Handling

- Managing data flow: major challenge of DSP systems

- Analog signals sampled as discrete values
 - Each sample is a single value at a specific point in time
 - Sample rate must be >2x max analog frequency
 - Oversampling rates >4x max freq often used for better signal quality
 - for high-quality Audio = 96 KHz

- Challenge: handle and process samples in real-time
Stream vs. Block Processing

Stream Processing
- Process one sample at a time
 - Low signal delay
 - Lower memory requirements
- Complex DSP Processing in High-Priority Interrupt Routine
 - High Latency for other ISRs

Block Processing
- Process blocks of samples at a time
 - Signal delay due to data block buffering
- Enables DMA Data Collection
 - Reduces Interrupt Overhead
 - Easy to combine with RTOS

Block Processing: preferred for most applications
CMSIS DSP Library is designed for Block Processing
Block Processing

- Longer blocks (~32 samples) reduce overhead
 - Due to fewer ISR and function calls
- But – introduce signal delays proportional to block size

Signal Delay = 2 x BlockSize
RTX: Message + Mailbox System buffers processing peaks
- Interacts with Tasks or Interrupt Service Routines
- Keeps a system responsive even with high workload
SOFTWARE DEBUG, OPTIMIZATION AND VERIFICATION
CoreSight™ Debug Technology

- Start, Stop, and Single-step User Program
- Instruction Trace Stream
- Application Trace Information: Debug printf, ITM, DWT, ETM
- Data Trace or Access Breakpoints for 4 Variables
- ITM, DWT, ETM Output via 4 trace data pins + 1 clock pin

Cortex-M4 processor

- 8 Hardware Breakpoints
- On-the-Fly read/write access
- JTAG (5-pin) or Serial Wire (2-pin + 1 trace pin)

- Run Control
- Breakpoint Unit
- Memory Access Unit
- Debug Interface
- Serial Wire Viewer
- JTAG or Serial Wire Debug
- Cortex Debug 10-pin or ARM JTAG 20-pin Connector
- Cortex Debug + ETM 20-pin Connector (optional)

- ETM Instruction Trace (optional)
- ITM Instrumentation Trace
- DWT Data Watchpoint & Trace Unit
- CPU & Interrupt Events
- 4-Pin Trace
- Trace Port Interface
- ITM, DWT Output via 1 serial trace data pin (UART or Manchester Mode)

13 The Architecture for the Digital World®
Debug and Trace Connectors

- **20-pin (0.1”) or 10-pin (0.05”) Connector**
 - Identical Debugging capabilities

Support 2 Operating Modes:
- Standard 5-pin JTAG mode (device chaining)
- Serial CoreSight mode
 - 2-pin **Serial Wire Debug** (SWD)
 - 1-pin **Serial Wire Trace Output** (SWO) for Data Trace at minimum system cost

- **20-pin (0.05”) Debug+ETM Connector**
 - Superset of 10-pin 0.05” Connector
 - Adds 4 (trace data) +1 (trace clock) pins for high-speed Data + Instruction Trace in any operating mode (JTAG or SWD)

Debug and Trace Adapters

ULINK2: Debug + Serial Wire Trace
- Flash Programming + Run-Control
- Memory + Breakpoint (access while running)
- Serial Wire Trace Capturing up to 1Mbit/sec (UART mode)

ULINKpro: adds ETM + Streaming Trace
- Cortex-M processors running up to 200MHz
 - 50MHz JTAG clock speed
 - Serial Wire Trace Capturing up to 100Mbit/sec (Manchester Mode)
 - ETM Trace Capturing up to 800Mbit/sec
- Virtually un-limited Trace Buffer
 - Streaming Trace allows complete Code Coverage and Performance Analysis
What is Streaming Trace?

- Trace data transferred in real-time to debug host
- Capture size only limited by host resources (hard disk)
- Trace for minutes, hours, or longer
- Required for full code-coverage and timing analysis
- Today’s workstations can present trace data instantly
Logic Analyzer

- Allows signals to be monitored graphically
 - Monitor variables in the application
- Accurate timing
 - Easy, fast analysis of signal timing with access to source code
 - View delta changes from cursor to current location
- Code analysis
 - View instruction that caused variable change
Execution Time Profiling and Analysis

- Instruction Trace provides timing information
 - Identify where most time is spent in your application

- Isolate problems by finding which C statements take longer than expected to execute
Code Coverage

- Complete software validation requires code coverage
 - Required for industry standards such as IEC61508……..
- ETM enabled devices provide complete instruction stream
 - Non-intrusive - use final, optimized code at full speed
- Feedback provided directly in the debugger window
 - Source & disassembly view
- Log File Support
 - Coverage information can be saved for documentation
Software Development Tools

Microcontroller Development Kit
Complete support for Cortex™ -M, Cortex-R, and ARM7™ /ARM9™ Devices

CMSIS COMPLIANT
ARM® Cortex™ Microcontroller Software Interface Standard

MDK-ARM
Microcontroller Development Kit
- ARM C/C++ Compiler
- RTX RTOS
- µVision Device Database & IDE
- µVision Debugger & Analysis Tools
- Device Peripheral Simulation

Examples and Templates

ULINK Debug Adapters

RTX and Real-Time Library
RTOS and middleware libraries for real-time and communication challenges

ULINK Pro

RL-ARM
Real-Time Library
- RTX RTOS Source Code
- TCPnet Networking Suite
- Flash File System
- USB Device/Host/OTG
- CAN Interface

The Architecture for the Digital World®
Customers use www.keil.com on a daily basis to obtain program examples, latest technical information, and support.

- Application Notes
- Program Examples
- Device Database
- Support Knowledge
- Discussion Forum

The Architecture for the Digital World®
Thank You

Please visit www.arm.com for ARM related technical details

For any queries contact < Salesinfo-IN@arm.com >