Technology trends that will redefine all industries

- Artificial Intelligence in every device
- Autonomous machines
- Augmented reality
- Hyperscale cloud and connectivity

Security and Privacy
Arm defines the technology that will redefine all industries

<table>
<thead>
<tr>
<th>Mobile and Consumer</th>
<th>Networking and Servers</th>
<th>Automotive and Robotics</th>
<th>Internet of Things</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Intelligence in every device</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Autonomous machines</td>
<td></td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Augmented reality</td>
<td>✅</td>
<td></td>
<td>✅</td>
</tr>
<tr>
<td>Hyperscale cloud and connectivity</td>
<td></td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>Security and Privacy</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
</tbody>
</table>
Arm introduction

Global leader in technology licensing
- R&D outsourcing for semiconductor companies

Innovative business model
- Upfront licence fee – flexible licensing models
- Ongoing royalties on partner sales
- Technology reused across multiple applications

Long-term, secular growth markets

>1,575 licences
Growing by >100 every year
>500 potential royalty payers

>21 bn Arm-based chips shipped in past year
~15% CAGR over previous 5 years
Arm’s business model

Arm develops technology that is licensed to semiconductor companies

Arm receives an upfront license fee and a royalty on every chip that contains its technology

1) Arm licenses technology to chip Partners
2) Partners develop chips and ship them to OEMs
3) OEMs sell products containing Arm-based chips
Arm’s strategy

Maintain or gain share in long-term growth markets

• From mobile phones to networking infrastructure and servers to embedded smart devices and automotive

Increase value of Arm technology per smart device

• Invest in developing more advanced processors with higher royalty rates
• Physical IP and multimedia IP further increase Arm’s value per chip

Explore and exploit new opportunities in emerging applications created by the Internet of Things

Invest to create a sustainable business, fit for the long term

• Create superior returns by developing new technology that will deliver increased profits and cash generation in the future
Arm’s main growth markets

<table>
<thead>
<tr>
<th>Mobile and Consumer Devices</th>
<th>Networking & Servers</th>
<th>Embedded Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>$77bn TAM 2026</td>
<td>$41bn TAM 2026</td>
<td>$85bn TAM 2026</td>
</tr>
</tbody>
</table>

Mobile and Consumer Devices
- Smartphones, tablets and laptops
- Apps processor, modem, connectivity, touchscreen and image sensors
- Growth coming from higher-value Arm technology such as Arm v8-A, octa core, multimedia

Networking & Servers
- Base stations, routers, switches, and servers for cloud and data centres
- Networks evolve to cope with increased data at lower latency: virtualisation, integration and programmability
- Most major chip vendors have announced Arm-based products

Embedded Markets
- Automotive, white-goods, wearables, smart devices in industrial and utilities
- Microcontrollers, smartcards, embedded connectivity chips
- 300 companies have licenced Arm processors for use in embedded computing devices
History of Arm

Joint venture between Acorn Computers and Apple

1990

Designed into first mobile phones and then smartphones

1993 onwards

Now all electronic devices can use smart Arm technology

Today
Smart devices contain many Arm processors

Applications Processor chips can contain multiple Arm technologies

- Arm v8-A processor for OS and apps
- Cortex-R controller for modem
- Cortex-M controllers for peripherals
- Arm Mali multimedia processors: GPU, video, display, camera, etc.
- Arm physical IP

When new functions are added to smartphones it creates opportunity for new Arm IP
Arm-based chip shipments

120bn

Arm-based chips shipped to date

39%

Market share in 2017

21.3bn

Arm-based chips shipped in 2017

17.7bn

Arm-based chips shipped to date

1991 2017

Calendar Years
Arm's opportunity continues to broaden

Semiconductor industry continues to grow: 8% by volume, 3% by value over past five years

Proportion of chips with processors is increasing over the medium term: 65% in 2017

Arm is gaining share within the “chips with processors” segment of the industry: 39% in 2017

* Data source: WSTS, April 2018 and Arm, Industry volume excluding analog and memory
** Arm estimates
From revenue to profits

FY 2017 Revenues

<table>
<thead>
<tr>
<th>Category</th>
<th>$m</th>
<th>£m</th>
<th>%revs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licensing</td>
<td>618</td>
<td>455</td>
<td>33%</td>
</tr>
<tr>
<td>Royalty</td>
<td>1,087</td>
<td>819</td>
<td>60%</td>
</tr>
<tr>
<td>Software and Services</td>
<td>126</td>
<td>94</td>
<td>7%</td>
</tr>
<tr>
<td>Total</td>
<td>1,831</td>
<td>1,368</td>
<td>100%</td>
</tr>
</tbody>
</table>

Costs (£m)

- 1,043

Adjusted EBITDA (£m)

- 325

Operating Margin

- 24%

Other expenses (£m)

- 180

IFRS EBIT (£m)

- 145

Over 95% of revenues earned in US dollars

Royalties are a growing proportion of revenues

Cost increase as Arm accelerates investment in R&D for future product developments

10% move in $/£ impacts profits by ~15% (forex impacts £ revenues and costs)

Operating margins will be lower than in recent periods as investments grow faster than revenues

Excludes amortisation of intangibles related to the acquisition of Arm by SoftBank

Financial numbers aligned with SoftBank reporting periods (01 April 2017 to 31 March 2018)
Qtr. ending March 2018 – Financial summary

<table>
<thead>
<tr>
<th></th>
<th>Q4 2016</th>
<th>Q4 2017</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues ($m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensing</td>
<td>122</td>
<td>156</td>
<td>28%</td>
</tr>
<tr>
<td>Royalty</td>
<td>258</td>
<td>269</td>
<td>4%</td>
</tr>
<tr>
<td>Software and Services</td>
<td>29</td>
<td>36</td>
<td>24%</td>
</tr>
<tr>
<td>Total ($m)</td>
<td>409</td>
<td>461</td>
<td>13%</td>
</tr>
<tr>
<td>Revenues (£m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS (£m)</td>
<td>13</td>
<td>23</td>
<td>77%</td>
</tr>
<tr>
<td>R&D (£m)</td>
<td>104</td>
<td>116</td>
<td>12%</td>
</tr>
<tr>
<td>SG&A (£m)</td>
<td>73</td>
<td>114</td>
<td>59%</td>
</tr>
<tr>
<td>Costs (£m)</td>
<td>190</td>
<td>253</td>
<td>33%</td>
</tr>
<tr>
<td>Adjusted EBITDA (£m)</td>
<td>133</td>
<td>77</td>
<td>-42%</td>
</tr>
<tr>
<td>Depreciation & amortisation</td>
<td>13</td>
<td>18</td>
<td>38%</td>
</tr>
<tr>
<td>Other operating expenses (£m)</td>
<td>-12</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>IFRS EBIT (£m)</td>
<td>132</td>
<td>25</td>
<td>-81%</td>
</tr>
</tbody>
</table>

- Licensing can fluctuate quarter to quarter Q1 up 22%; sequentially; Q2 down 17%; Q3 up 54%; Q4 down 18%
- Royalty revenue growth driven by market share gains and increasing royalty per chip
- USD weakened versus sterling in past year (1.27 vs 1.40)
- 21% increase in total headcount
- New remuneration schemes post acquisition
- Currency fluctuations lead to mark-to-market revaluation of long-term contracts
- Full year IFRS EBIT margin 17% excluding impact of exchange rate fluctuations
2017 Licensing: 141 is within the normal range

Historic licensing

Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Classic</th>
<th>Cortex-A</th>
<th>Cortex-R</th>
<th>Cortex-M</th>
<th>Mali</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td>45</td>
<td>16</td>
<td>58</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Withdrawn from licensing

0

Average

- Classic: Av. = 0
- Cortex-A: Av. = 15
- Cortex-R: Av. = 16
- Cortex-M: Av. = 58
- Mali: Av. = 22

Average

- Overall: Av. = 39
- Overall: Av. = 70
Licensing enables future royalties

Arm signed 141 licences FY 2017

Arm’s current royalty revenues are derived from licences signed many years ago

Growing base yields royalty revenues over long period

~35% of Arm’s most recent licences are drivers of future royalty revenue

~500 licences signed since Q1 2014

~575 licences signed since Q1 2014

Significant Royalty Potential from Recent Licences
Arm’s expanding opportunity

<table>
<thead>
<tr>
<th>Market Share</th>
<th>Market Value</th>
<th>Market Share</th>
<th>Market Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>$21bn</td>
<td>90%</td>
<td>$15bn</td>
</tr>
<tr>
<td>45%</td>
<td>$14bn</td>
<td>45%</td>
<td>$18bn</td>
</tr>
<tr>
<td>20%</td>
<td>$14bn</td>
<td>20%</td>
<td>$19bn</td>
</tr>
<tr>
<td>~1%</td>
<td>$17bn</td>
<td>~1%</td>
<td>$22bn</td>
</tr>
<tr>
<td>10%</td>
<td>$8bn</td>
<td>10%</td>
<td>$15bn</td>
</tr>
</tbody>
</table>

Mobile
- Applications processor: $21bn
- Other mobile chips: $14bn

Infrastructure
- Networking: $14bn
- Servers: $17bn

Automotive
- IVI and ADAS: $4bn
- Other automotive chips: $8bn
Arm’s expanding opportunity

Embedded
- Controller in IoT Devices: 90% (2017) | 90% (2026), $7bn (2017) | $24bn (2026)
- Microcontrollers/SIM Cards: 20% (2017) | 20% (2026), $17bn (2017) | $21bn (2026)

Other Markets
- Consumer Electronics: 40% (2017) | 40% (2026), $21bn (2017) | $27bn (2026)
- Other chips: 40% (2017) | 40% (2026), $7bn (2017) | $10bn (2026)

Total Market
- All chips with processors (current TAM): 39% (2017) | 39% (2026), $130bn (2017) | $200bn (2026)
- All addressable chips (future TAM): 25% (2017) | 25% (2026), $165bn (2017) | $220bn (2026)
Arm’s opportunity in mobile and consumer

Continued growth from advanced technology and new form factors

Growth has been driven by advanced Arm technologies

Consumers pay a premium for performance and features

Investment in smartphones has led to new form factors

Arm content in smartphones

<table>
<thead>
<tr>
<th>Year</th>
<th>Arm v7-A</th>
<th>Mali graphics</th>
<th>Arm v8-A</th>
<th>High core count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$60 of Arm-addressable chips in the latest high-end smartphones
Arm’s opportunity in automotive

Functional safety, consolidation, partitioning, performance, power, cost

- **Powertrain**
 - Cortex-R52
 - Real time
 - Homogeneous multi-core

- **Autonomous driving**
 - Cortex-A75 + Mali G72 + Cortex-R52 + ML
 - High performance multi-cluster
 - Machine Learning
 - Functional safety

- **Vision ADAS**
 - Cortex-A55 + Cortex-R52 + Mali C71
 - Heterogeneous multi-core
 - Computer Vision Control

- **Infotainment**
 - Cortex-A75 + Cortex-A55 + Mali G51
 - Energy-aware scheduling
 - Rich OS
 - Security

- **Central body control**
 - Cortex-M7, Cortex-M0+
 - Low power
 - Efficient performance
 - Scalable

- **Other modules**
 - V2X
 - Chassis
 - Security
 - Radar
 - Sensor
 - Audio
Arm’s opportunity in servers
Targeting 25% share (~1% share today)

Arm processors are suitable for >50% of data centre workloads

Microsoft has ported the core components of Windows Server onto Arm

- Search and Indexing
- High-performance storage
- Machine learning and big data
- Web servers, database servers
- Email, PaaS services

Arm v8-A selected for High Performance Computing

- Barcelona Supercomputer Centre selects Arm v8-A for Mare Nostrum 4
- Fujitsu and RIKEN select Arm v8-A for the Post-K supercomputer

Now shipping into enterprise applications

Arm v8-A server chips are shipping in volume into storage appliances.
Arm’s opportunity in networking
Targeting >50% share of chips in next-generation networks

Future networks will be based on open source collaboration

Networking software is being optimised for Arm-based chips

Accelerating data comms from server to server

"When you offload to hardware, you run roughly a tenth the latency, a tenth the power, a tenth the cost. Here’s some great news: we’re in the semiconductor business!"

James Hamilton, VP and Distinguished Engineer, AWS
Arm’s opportunity in IoT – silicon IP
The architecture of choice for IoT developers

Cortex-M processors enable secure, low-cost IoT devices

High-value tech is now available at consumer price points

Every thing will be connected

Annual production of IoT modules

200 bn
150 bn
100 bn
50 bn
0 bn

2017
2035

1 trillion cumulative
Arm’s opportunity in IoT – software and services
Investing to create new revenue streams

Arm forecasts a $1 trillion TAM for IoT technology in 2035

Arm’s IoT platform is being integrated into OEM lifetime management services

The TAM refers to IoT technology (electronics, software, services) only, it excludes the value of the ‘things’ that contain the IoT modules
Artificial intelligence in every device
Learning in the cloud, inference at the edge

Mobile

Automotive

Robotics

Drones

IoT

Home, surveillance & analytics

VR/MR

Shipping & logistics
Machine learning and computer vision
The key workloads for intelligent computers

Widely-available software tools give developers access to ML

- TensorFlow
- Caffe2
- arm COMPUTE LIBRARY
- OpenCV
- cuDNN

Optimise for performance, cost and programmability

- More than 50x AI performance boost on the CPU in the next 3-5 years

The latest Arm v8-A CPUs implement new instructions for ML calculations, and increase the memory bandwidth between CPUs and accelerators.

Stable algorithms can be hardwired into accelerators

Arm’s Project Trillium includes accelerators for Machine Learning and Object Detection and optimised libraries for Neural Networks. It is up to 80x more efficient than a typical DSP implementation.
Autonomous machines
Advanced compute is moving to the physical domain

Robots and autonomous cars will operate alongside people

The physical domain requires stringent safety standards

Vehicle electrification will force the pace of change

- All future models from Volvo will have electric or hybrid engines
- UK and France have announced plans to phase out petrol vehicles by 2040

Arm DynamIQ supports ASIL D for safety critical automotive and industrial systems
Augmented reality
New experiences and new user interfaces

Seamless interactions between humans, machines and data

Augmented reality (AR) overlays digital information onto the user’s view of their immediate surroundings.

AR relies on advanced display technologies and new techniques for reading user input, such as 3D sensors.

A demanding roadmap for mobile GPU performance

Latency: <16ms
to avoid motion sickness

Frame-rate: >60 Hz
for a smooth viewing experience

Resolution: 2K minimum
for realistic images

Driving innovation in displays, 3D sensors and computer vision

Source: Sony
Enterprise compute is moving to the cloud

Insatiable demand for data is driving new standards

- 1000x data volume per km²
- 1000x connections per km²
- 100x user data rate
- 80% reduction in latency
- 80% reduction in opex
- 90% reduction in energy

Workloads will be shared across devices, base stations and servers

Autonomous vehicles will be controlled by computers in the car, in neighbouring cars, in nearby base stations and in remote datacentres
Information security
The fundamental component of all connected systems

Secure systems are built on a hardware root of trust

- Secure Identity
- Software Identity
- Secure Boot
- Isolation
- Authentication
- Encryption
- Tamper Detection
- Trusted Execution Environment

Devices must be kept secure with regular software updates

Good security is inexpensive to implement and costly to crack

Arm Mbed Cloud takes care of complex security tasks in large-scale IoT networks. This allows Arm’s OEM customers to concentrate their development on features that differentiate their product offering.

Chinese OEM to recall up to 10,000 webcams after hack
Mirai Botnet attack, October 2016
Arm's current business

Arm develops intellectual property (IP) blocks which are used in silicon chips.

Our partners combine Arm IP with their own IP to create complete chip designs.

We earn license fees when we deliver Arm IP to our partners and royalties when our partners ship chips that contain Arm IP.

Highly profitable and cash generative.
Accelerating investment to increase share gains

Investing to create new revenue streams

- Mbed Cloud SaaS business
- Early-stage investment but many years in research
- Securely connect and manage any device, using any communications technology, supporting any cloud platform
 - Device Management: secure device identification, on-boarding and configuring
 - Secure Connectivity: manage your IoT networking using standard-based comms
 - Data Management: Ingestion and aggregation of data

Generating profits and cash to be reinvested

Mbed Cloud Partners
Revenues, investments and profits

Until 2016 revenues grew faster than costs as Arm constrained investment in R&D to enable increasing profits.

For the current phase of investment Arm expects costs to grow faster than revenues.

This should yield even greater profits in the future.

Note: Excludes certain one-offs:
- 2013: Write down of MIPS patents (£100m)
- 2016: Execution costs associated with SoftBank acquisition
- 2017: Currency fluctuations
Investment philosophy

“Now is the time to be sowing, not harvesting”

- Rate of investment is discretionary and under Arm’s control
- SoftBank has asked Arm to accelerate investments and to increase risk appetite
- All costs are expected to be financed from IP business’ revenue streams
- During this accelerated investment phase, costs are expected to grow faster than revenues

Arm has over £1.1bn of net cash and no debt
Return on Investments – Arm v8-A case study

Arm incurs R&D costs many years before revenue starts

Research into 64-bit computing started in 2000

Arm v8-A Development starts

Architecture development and processor design

First generation of processors

Multiple processors in development

Return on Investments – General case

Arm incurs R&D costs many years before revenue starts.

Research into 64-bit computing started in 2000.

New technology development starts → Initial development phase → First technology agreements → Investment ramps → New technology announced → Technology delivery → Recurring revenue starts → New technology development starts

Revenue continues for many years after the investment phase, yielding high profits over time.
Investing in people, infrastructure to create new products

Costs are higher in 2017 as Arm expands R&D capability

Future cost increases are expected to be consistent with increases in headcount

<table>
<thead>
<tr>
<th>FY2016 Costs</th>
<th>21% increase in headcount</th>
<th>Increased IT, facilities and other investments</th>
<th>Reclass of share-based comp*</th>
<th>Bonus and replacement comp scheme</th>
<th>Impact of weaker sterling</th>
<th>Bad debt provision</th>
<th>FY2017 Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>£667m</td>
<td>£164m</td>
<td>£74m</td>
<td>£83m</td>
<td>(£3m)</td>
<td>(10m)</td>
<td></td>
<td>£1,043m</td>
</tr>
</tbody>
</table>

*Share-based compensation was previously included in IFRS “other costs
Arm IR Updates

The Arm IR team sends out regular updates on news and technology trends

To register for these emails, visit:

www.arm.com/ir-emails

More content available on our website: www.arm.com/ir