Enabling a Richer Multimedia Experience with GPU Compute

Roberto Mijat
Visual Computing Marketing Manager
What is GPU Compute

Operating System and most application processing continue to reside on the CPU and can be accelerated through multi-core and NEON technologies.

The GPU is now programmable through C-like languages and APIs such as OpenCL™ and Android™ RenderScript.

The GPU enables cost effective, efficient, and high performance floating point and parallel computation.

The GPU can be used as a computational accelerator or as a companion processor.

Use cases offloaded to the GPU can include:
- Traditional 2D/3D graphics
- Advanced image processing
- Acceleration/complement of ISP functionality
- Offload of video codec functional blocks
- Acceleration of physics computation

GPU Compute Definition
The use of the GPU for offload and acceleration of non graphical computational tasks.
The Evolution of Mobile GPU Compute

OpenGL ES 1.1
Fixed pipeline

- Mali-55

OpenGL ES 2.0
Programmable pipeline

- Mali-200
- Mali-300

OpenGL ES 3.1 Compute Shaders
GPU Compute within graphics pipeline

- Mali-400 MP

OpenCL Full Profile / RenderScript
Portable Heterogeneous Parallel Computation

- Mali-T600 Series

Mali-T700 Series

- 2007
- 2009
- 2010
- 2012
- 2013
GPU Compute: Improve Existing and Enable New Solutions

| Increased system-level energy efficiency | • Complement CPU processing
• Enable choice of best processor for the job |
| Better load-balance across system resources | • Use heterogeneous compute APIs designed for concurrency |
| Free up CPU resource | • Offload non-graphical computational tasks to GPU |
| Flexibility, portability and programmability | • Software solution leveraging CPU+GPU subsystem
• Industry standard portable APIs |
| Improve User Experience | • Remove computational barrier to improve visual quality, responsiveness, accuracy within existing compute & energy budgets |
| Reduce cost, risk and TTM | • Enable new applications using existing silicon design |
ARM Mali: The Leader for GPU Compute

- Architecture designed from the ground up for Mobile GPU Compute
- First to ship in real products (Google Chromebook, Google Nexus 10, Insignal Arndale)
- First to support Android RenderScript Compute on GPU
- Proven benefits through real applications and use cases by third parties
 - Advanced imaging, computer vision, computational photography and media codecs
 - Improved performance and energy efficiency measured on consumer devices

- ARM is leading the heterogeneous computing industry
 - Tight integration and aligned roadmap with other system components
 - Actively contributing to Khronos OpenCL, OpenVX and Camera WGs
 - Founding member or HSA Foundation
 - Member of the Embedded Vision Alliance
Example use cases for GPU computing

Mobile
- Computational photography
- Moving and still image real-time stabilization
- Information extraction: object detection, classification and tracking
- Imaging: correction, improvement, consolidation
- Content and context understanding
- ISP pre- and post-processing
- Augmented reality
- Physics in games
- HEVC/VP9 decoding

DTV/STB
- 2D to 3D conversion
- Super resolution
- Video pre- and post-processing
- Camera based gesture UIs
- Trans-coding
- Information extraction and superimposition

Automotive
- Lane detection
- Smart head-light
- Road sign recognition
- Night vision
- Object classification
- Pedestrian, vehicle and collision detection
- Vehicle detection
- Dynamic cruise control

100s GFLOPs of efficient processing power: improve existing use-cases, enable next generation use-cases
Third Party Adoption and Enablement Timeline

- Real-time Image Stabilization
- CLBenchmark and RSBenchmark
- Image processing and video editing
- Gesture UI
- iHDR sensor processing (ISP offload)
- EyeSight
- Gesture UI
- HEVC decode 1080p
- HEVC and VP9 decode 1080p
- Gesture UI
- Up-scaling and soft-HDR
- Assertive Display (ambient computing)
- Low-energy HPC
- JPEG Photo apps
- HEVC and VP9 decode 1080p
- Face, gender, age detection
- Image processing

PARTIAL LIST OF ARM MALI PARTNERS
Proven Benefits for Image Processing

OpenCL Enabled JPEG Decoder

Power Consumption Comparison

- OpenCL Fast
- Neon

[4]

[1] Acceleration compares RenderScript compiled on device (LLVM) on dual-core ARM Cortex™-A15 and ARM Mali-T604 on a stock Google Nexus 10 device

[3] Battery drain test measured on Google Nexus 10 (30 iterations of de-shake transcoding)

[4] Measured on InSignal Arndale developer platform
Proven Benefits for Computer Vision

- Increased robustness and detection accuracy in poor lighting conditions
- Multi-user face feature detection and analysis accelerated using OpenCL on Mali-T600 GPU

Face Detection relative comparison:
- On average, 8.7x performance improvement
- On average, 83% energy reduction

 Tested on an instrumented InSignal Arndale Community Board
Algorithm based on OpenCV Face Detection example
OpenCL kernels re-written and optimized for Mali-T604
Average results represented, permitting CPU and GPU operational frequencies
Why GPU compute for HEVC decode?

- High resolution HEVC decoding on CPU creates high loading
- GPUs are traditionally idle during video playback
- GPU architecture suits acceleration of parallel codec blocks
- Offloading computation to the GPU frees up the CPU to perform other (system) tasks
- Combining CPU (NEON) and GPU Compute enable most efficient HEVC decode

“Mali GPUs are well suited for video acceleration with significant power/performance benefits”

“Mali acceleration opens up the possibility of 1080p @ 60 fps and 4K x 2K @ 30 fps HEVC decode on mobile devices without dedicated HW”

Source: Ittiam Systems
Proven benefits for HEVC decode

- ARM is collaborating with several codec vendors
 - Ensuring widest availability of HEVC across multiple ARM platforms
 - Enabling HEVC early, in software, through ARM NEON™ and GPU Compute
 - Multiple partners developing OpenCL-enabled HEVC codecs for Mali-T600

![Graph showing CPU load, performance, and energy consumption comparison between CPU Only implementation and With OpenCL/GPU. The graph indicates up to 50% reduction in CPU load, up to 2x in framerate uplift, and 20-30% reduction in battery consumption.]
Mali GPU Compute Partners Represented at Today’s Event

- ArcSoft
- eyesight™
- Ittiám
- ALVA Systems
- ThunderSoft
Conclusions

- Modern compute APIs enable efficient and portable heterogeneous computing
 - Use the best processor for the task
 - Balance workload across system resources
 - Offload heavy parallel computation to the GPU

- GPU Compute with ARM Mali GPUs brings tangible advantages for real world applications
 - Reduced cost and time to market
 - Improved performance and user experience
 - Improved performance and energy efficiency measured on consumer devices
 - Used for advanced imaging, computer vision, computational photography and media codecs

- The Mali Ecosystem is making GPU Compute a reality today
 - Industry leaders take advantage of ARM Mali GPU capabilities to innovate and deliver
 - Be one of them!
Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners.