
1

Cloud Native at the Edge:
High-performance Edge Inference
with RedisAI

White PaperA Project Cassini Reference Implementation

Real-time analytics and data insights at Edge
Analysis of data collected from devices and resources such as sensors and edge devices

is growing rapidly among industrial customers. Image processing, anomaly detection for

predictive maintenance, and log analysis are some of the most popular use cases for

edge analytics. Several reasons make running data analytics on edge devices attractive:

1.	 		Analyzing	data	on	edge	devices	can	save	money	and	resources	by	offloading	

the computations from cloud.

2. The latency of sending data to the cloud for analytics could be high, particularly when

processing real-time events. Performing inference on real-time data may require the

inference engine to be as close to the data source as possible.

3. Reliability of network connections can be an issue for IoT platforms, hence making

on-device inference and decision making important in critical scenarios.

Challenges
Industrial IoT market is expected to experience the growth of 15.2% per year for the

forecast period of 2020-2027 (Data Bridge Market Research, 2020), which is mostly driven

by machine learning, AI, and data analytics. However, still most data in IIoT environments are

not currently exploited for analytics, and huge number of devices are not even linked up to

a sever in the cloud.

While many of applications such as assembly line redesign will take place in the cloud,

a substantial number of tasks—predictive maintenance based on real time data, product

consistency	based	on	computer	vision,	or	energy	efficiency—will	be	performed	locally	

at the edge. The money that industry can save by edge analytics such as predictive

maintenance could be huge. Some mining companies have reported an estimated loss

of $30k per hour in downtime. This is worse in automakers industry, which is $20k-$30k

per minute (Altman, 2019). With more than 180 billion chips, Arm will play a big part in

integration of the IoT functionality into devices for edge analytics.

Index

Real-time analytics and data

insights at Edge

Challenges

RedisAI, a solution for edge

inference

RedisAI on Arm

Use case: Finger follower

inspection

Edge inference with

Project Cassini

Take the Next Step

2

Running analytics on edge cuts cost and latency while increasing reliability. Still, owners

will have to balance their analytics needs with the core hardware and software capabilities.

In general, IoT devices have limited computational power with lower resources, and many

of the on-the-shelf analytic tools are not designed with an eye on running on small devices.

Therefore, finding right tools and techniques to run applications on the edge could

be challenging.

RedisAI, a solution for edge inference
Redis is a lightweight in-memory database used as a high-speed local key-value cache. Redis

has a modular structure, which allows adding custom functionalities to run over stored data.

RedisAI is a module written by RedisLabs for the purpose of running deep learning models

over stored data. Running as a Redis module, RedisAI increases the throughput and

reduces latency.

RedisAI	on	the	edge	can	bring	the	following	benefits:

 Latency reduction and throughput increase achieved through performing inference

on the data directly from database’s shared memory.

 Zero downtime on new model deployment as models can be updated transparently

resulting in no operational downtime.

 Support	for	major	backends,	including	Tensorflow,	Tensorflow	Lite,	Pytorch	
and ONNXRuntime.

 With low footprint, RedisAI is highly scalable and increases throughput

and available memory.

Figure 1. Redis AI components

3

Redis, RedisAI and Redis Streams work together

The RedisAI solution consists of several components:

 RedisAI: The module RedisAI is designed to apply inference on input tensors (multi-

dimensional arrays storing data values) and return the result as output tensors stored

in Redis database (A Tensor data structure is another data type that Redis supports).

RedisAI allows models to be stored into Redis and run against input data.

 Redis Streams: Edge devices receive information as streams, a sequence of data

values arriving	from	peripheral	devices,	sensors,	or	other	systems.	Data	streams	

in	Redis	 is	handles	by	Redis	Streams	module,	which	allows	streaming	data	to	be	

ingested into the database and allows consumers to wait on the new data added

to the stream to consume. Consumers can act as one or more consumer groups,

which allows	them	to work	in	a	distributed	fashion	for	parallel	processing	when	

the rate of data ingestion is high.

 RedisGears: A component is required to glue Redis Streams and RedisAI, where it

can	read	and	filter	streaming	records,	transform	them	into	tensors,	run	inference	on	

them, and store the results as another data stream or send it to an external storage.

Another Redis module that is implemented to achieve such a dynamic programmable

mechanism	 is	RedisGears.	It	is	a	serverless	engine,	designed	for	batch	and	event	driven	

data processing. RedisGears functions starts with a reader, which reads from a source

and creates data records, and the next steps will perform custom operations on the

incoming data. A function registers itself as event handler (like data stream events)

so it runs	on	the	new	records	whenever	they	are	added	to	the	stream.

 RedisGears	allows	users	to	connect	RedisAI	and	Redis	Streams	in	a	programmatic	way
by	providing	Python	and	C	APIs.	The	components	of	RedisGears	are	as	the	figure below:

Figure 2. RedisGears

components and internal

design

4

RedisAI on Arm
RedisAI runs on Arm-based processors such as AWS Graviton2, Nvidia Jetson Nano,

and Jetson TX2 out of the box. In addition, RedisAI can be containerized to run on Arm

systems, which allows container orchestration platforms like Kubernetes to automate

the deployment and updated of RedisAI clusters on edge devices or on the cloud.

RedisAI and Redis Streams in production

Orobix	is	one	of	Arm	ecosystem	partners	that	provides	artificial	intelligence	solutions	

on Arm platforms to manufacturers and other businesses. It has developed an AI lifecycle

and	governance	platform	(named	Invariant.ai)	for	managing	artificial	intelligence	in	critical	

contexts. By leveraging Redis Streams and Redis AI, it ensures observability of AI-governed

processes and traceability of production models. Their solutions perform real-time analytics

for	anomaly	detection,	drift	detection,	similarity	finding,	and	predictive	maintenance.	

Use case: Finger follower inspection
in automotive industry
Orobix	has	designed	an	automated	defect	detection	for	finger	follower	parts	produced	by	

a motorcycle parts manufacturer. Finger followers are used in motorcycle engine to transfer

the rotary motion from camshaft to valves. The system had to differentiate between actual

defects and dust or small particles from industrial machinery. Before Orobix, the defect

detection process was handled by human inspection. Orobix used RedisAI cluster for storing

images	and	finding	defects	(anomalies)	in	production	parts.

System components

The	system	design	for	automated	classification	of	defective	finger	followers	is	shown	

in Figure 3. It uses

1.	 		Arm	processors	for	the	rest	of	the	components,	specifically	NVIDIA	Jetson	TX2	

(VisionBox	Daytona),	with	Quad-Core	Arm	Cortex-A57	CPU	and	256-core	NVIDIA	

Pascal GPU architecture. This allowed the customer to run ML/DL inferences on GPU

cores, increasing the throughput dramatically.

2.	 	Cameras	with	GigE	Vision	standard	support	(TeleDyne	Dalsa	or	Basler).

3. General purpose industrial PC for HMI (Human Machine Interface) agent.

5

Invariant.ai platform, which the system is design on top of it, is composed of agents

connecting through communication channels. An agent is a software component

implementing a certain functionality, and explicitly declaring the set of input and output ports.

Each port is mapped to a Redis stream on a certain Redis instance and can either act as an

input (or output) source of messages. Figure 3 shows a Process Graph, which is a concept

used	to	describe	the	connections	between	agent	ports	and	is	used	to	configure	how	data	

flows	across	the	different	software	components	that	implement	the	required	function	in	

a distributed manner. That provides

 full	observability	of	the	data	flowing	across	the	different	software	components

 ease of distribution of software components on different physical machines,

decoupling the execution of software running on them

The process graph of the system is composed of 7 Invariant.ai agents in addition to RedisAI.

Two agents perform the acquisition from two Industrial cameras (Teledyne DALSA)

implementing	the	GigE	Vision	Protocol.	One	camera	captures	images	of	the	front	and	the	

other one of the back of parts. Each image is written once to a Redis stream, and multiple

agents can consume the same image. In fact, not only the HMI (Human Machine Interface)

agent receives the produced images to show them as a preview to the end-user, but also the

FrontClassification	and	BackClassification	agents	are	receiving	a	copy	of	them.	The	Front	and	

Back	classification	agents	perform	pre-processing	of	the	received	images	and	then	leverage	

RedisAI	for	the	inference	(Deep	Learning	in	this	specific	scenario).	Each	Classification	agent	

produces an inference (defective/not defective), that is then processed by the Modbus agent.

This last agent leverages the Modbus protocol to write to the PLC of the machine the

final	outcome.

6

Figure 3. Process graph

of defect detection system

All the agents run in Docker containers. Each node capturing images from the cameras run

two containers, one for the camera agent, and one running Redis. Similarly, the node running

classification agents runs two containers, one for front image classification, and one for

the back.

The modular system design helps in customizing hardware components based on resource

requirements. For instance, larger models may require RedisAI to run on a machine with more

memory, while the rest of the system remains intact. In addition, containerized architecture

allows running software components on customized architecture with the least possible

modification,	and	on	different	manufacturing	environments.

Edge inference with Project Cassini
Project Cassini is a collaborative initiative covering standards, platform security, and

reference implementations with cloud-native standards at edge. That allows users to

run their software stack on edge devices and connect them to their cloud environment

in a secure and scalable manner.

With more partners joining Project Cassini’s edge ecosystem, users will have a broader

choice	on	different	platforms	without	experiencing	difficulties.	This	is	important	for	

edge applications, where the same software may have to run on different hardware

and	firmware.	Project	Cassini	allows	frictionless	orchestration	of	applications	and	

connect them to the different cloud providers.

https://www.arm.com/solutions/infrastructure/edge-computing/project-cassini

7

Cloud-native experience through Project Cassini helps edge analytics applications,

where a single software may run on hundreds or thousands of devices, with simple

and seamless management of application lifecycle, scalability, fault tolerance, and

updates are necessary. Redis and RedisAI can run inside containers on Arm devices,

hence	benefit	from	cloud-native	software	stack	for	orchestration	and	management.	

In addition, SystemReady compliance allows applications to run on different Arm

platforms	with	no	modification	required.

Take the Next Step
We invite partners to engage on Project Cassini and explore the applicability of the RedisAI

for their edge inference solutions. To get involved, contact us at project-cassini@arm.com

or visit us at arm.com/project-cassini.

 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the
information contained in, or the product described in, this document may be adapted or reproduced in any material form except with
the prior written permission of the copyright holder. The product described in this document is subject to continuous developments and
improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied
or	expressed,	including	but	not	limited	to	implied	warranties	of	satisfactory	quality	or	fitness	for	purpose	are	excluded.	This	document	
is intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable
for any loss or damage arising from the use of any information in this document or any error or omission in such information.

 © Arm Ltd. 2021

mailto:project-cassini%40arm.com?subject=
https://www.arm.com/solutions/infrastructure/edge-computing/project-cassini

