
1

White Paper

Benchmarking Apache Kafka
for Cost-Performance on
Amazon Web Services

Gain 30% cost-performance savings with your
Apache Kafka deployments on Arm Neoverse
powered AWS Graviton2 processors.
When it comes to cloud computing, Amazon EC2 is an obvious choice for most developers and
cloud users. However, the cost of deploying a given workload can vary widely depending on
the instance type that you choose. Amazon EC2 provides a wide selection of instance types
optimized to fit different use cases with varying combinations of CPU, memory, storage, and
networking capacity and give you the flexibility to choose the appropriate mix of resources for
your applications.

We’ve looked at how Amazon EC2 instances based on x86 processors compare to those based
on the AWS Graviton2, the latest processor from Amazon Web Services (AWS) to use a 64-bit
Arm Neoverse core. Our benchmarks results for workloads such as NGINX, Memcached,
Elasticsearch, and many more have consistently shown that AWS Graviton2 instances can
deliver significant advantages, in terms of efficiency and throughput, when compared to
similarly equipped instances based on x86 processors.

In this paper, we explore the price/performance gains of using AWS Graviton2 to run memory-
intensive workloads that process large data sets. We do this by comparing the results of
running Apache Kafka, a popular event-streaming platform. Event-streaming workloads can
process trillions of events in a day with real-time data analysis, so they need to run on memory-
intensive instances that can quickly and efficiently process very large data sets.

For our benchmarks, we tested Apache Kafka on Arm-based Amazon EC2 R6g instances and
x86-based R5 instances. We document each step in detail, so you can easily replicate our
results in your AWS environment.

The key takeaway is that running Apache Kafka workloads on AWS Graviton2 based instances
deliver throughput and latency values that are comparable to that of x86 instances, at a “30%
cost-performance advantage. That’s a significant cost savings, and a compelling reason to
choose AWS Graviton2-based instances for the many use cases in industrial, financial, and
consumer applications that make use of event streaming.

Index

The Basics of Apache Kafka

Test Setup

Configuration

Producer Test Setup and Results

Consumer Test Setup and Results

Closing Remarks

2

The Basics of Apache Kafka
Apache Kafka is an open-source platform for event streaming, designed to manage real-time
data feeds. Kafka makes it possible to analyze data that pertains to a particular event – such as
when a sensor transmits data, a company deposits money in a bank account, or a person books a
hotel room – and then respond to that event in real time.

Kafka workloads can read (subscribe to) and write (publish) real-time events that occur within
an application or service and then store them for immediate use or later retrieval. Kafka
workloads can also manipulate, process, and react to event streams, either in real time or
retrospectively, and can route streams to different destination technologies as needed.

Kafka workloads are used in a wide range of applications that deal with massive amounts of data
and require real-time decision-making. In the financial sector, for example, Kafka workloads can
be used to process payments, purchase stocks, and complete other transactions in real time,
and in the supply chain they can be used for real-time fleet management, shipment tracking,
and other logistical tasks. Industrial applications can use Kafka to capture and analyze sensor
data from IoT devices and other equipment, and hospitals can use them to monitor patients and
ensure timely treatment. Consumer interactions become more responsive with Kafka because
hotel bookings, airline purchases, and other retail activities become both more individual and
more automatic. Enterprises can use Kafka workloads, too, using them to connect, store, and
make data more readily available throughout the organization, and as the foundation for data
platforms, event-driven architectures, and microservices.

Test Setup
Our benchmark measures the throughput and latency of writing and reading events on a Kafka
cluster. The throughput metric we use is Records Per Second (RPS), and the latency metric is
the 99-percentile latency in milliseconds (ms).

In Kafka, events are ca lled records. Records are written by producers and read by consumers.
We wanted to get a sense for the factors that influence producer and consumer performance,
so we designed our tests to stress the Kafka cluster as much as possible.

Keep in mind that we used a synthetic testing environment, so results on other use cases may
vary from what is shown below.

2.1 Top-Level Test Setup

Below is the AWS setup for our tests.

M6g

M6g

Load Generators
Producers/Consumers

2X M6g.16xlarge

M6g M6g M6g

Kafka Cluster (System Under Test)

3-Node Kafka Cluster

M6g M6g M6g

Zookeeper ClusterVPC

3x M6g.xlarge

Region us-east-1

AWS Cloud
AWS Test Setup for
Kafka Benchmark

3

Instance Type Size Virtual CPUs
(vCPUs)

RAM (GiB) Network (Gbps) Cost
(USD/hr)

Elastic Block Store
(EBS) Volume (GiB)

Direct At-
tached (GB)

r6g xlarge
2xlarge
12xlarge

4
8
48

32
64
384

10
10
20

0.2016
0.4032
2.4192

512
512
512

None
None
None

r5 xlarge
2xlarge
12xlarge

4
8
64

32
64
512

10
10
20

0.252
0.504
4.032

512
512
512

None
None
None

r5a xlarge
2xlarge

4
8

20 2.4192 512
512

None
None

r6gd 2xlarge 4 32 10 0.252 None 1 x 475

r6gd 2xlarge 8 64 10 0.576 None 1 x 300

Ubuntu 20.04

Arm AMI ami-008680ee60f23c94b

X86-64 AMI ami-0758470213bdd23b1

Kafka Kafka 2.6.0 (built with Scala 2.13)

Zookeeper Packaged with Kafka 2.6.0

JDK openjdk-14-jdk (installed via apt)

Table 1. Instances Used
for Kafka Cluster 3.

Table 2. Version
Information

The setup includes three components: a Zookeeper cluster, a Kafka cluster, and load generators.

1: Zookeeper cluster

The three-node Zookeeper cluster is required for Kafka operation, and because it is not in the
performance critical path, it remained unchanged throughout all tests. To show that Zookeeper
works on Arm-based platforms without modification, we ran the cluster on general-purpose
m6g.xlarge instances based on the AWS Graviton2 processor.

2: Kafka cluster

The three-node Kafka cluster is responsible for storing and serving records, as well as record
replication (durability). This is the portion of the setup we stress tested. The diagram shows that
the Kafka cluster is composed of m6g instances. However, as part of our testing we also tested
three-node clusters with the instance types and sizes shown in Table 1. Note that the instance
type with the lowest cost (USD/hr) is the AWS Graviton2 r6g.xlarge.

Load generators

We ran the producer and consumer tests on the two load generator instances in the diagram.
When evaluating throughput, we used both load generators, but when evaluating latency, we
used only one.

The table below lists key SW versions used for testing.

4

#########

To view the default value before writing, remove the
assignment.

For example, to view net.ipv4.ip, run “sysctl net.ipv4.ip_
local_port_range”

sysctl net.ipv4.ip_local_port_range=”1024 65535”

sysctl net.ipv4.tcp_max_syn_backlog=65535

sysctl net.core.rmem_max=8388607

sysctl net.core.wmem_max=8388607

sysctl net.ipv4.tcp_rmem=”4096 8388607 8388607”

sysctl net.ipv4.tcp_wmem=”4096 8388607 8388607”

sysctl net.core.somaxconn=65535

sysctl net.ipv4.tcp_autocorking=0

#########

#############

tickTime=2000

dataDir=/tmp/zookeeper

clientPort=2181

maxClientCnxns=0

initLimit=10

syncLimit=5

server.1=zk_1_ip:2888:3888

server.2=zk_2_ip:2888:3888

server.3=zk_3_ip:2888:3888

#############

Configuration
3.1	Linux	Configuration

Except for some network settings, we left the kernel-level configurations at their defaults.
Below are the commands used to change the networking settings.

3.2 Kafka Node Storage

For instances without direct-attached storage (r6g, r5, r5a), we used Elastic Block Storage (EBS)
volumes of size 512GiB. These volumes were dedicated to Kafka to ensure high performance.
For instances with direct-attached storage (r6gd, r5d), we used the direct-attached storage
provided by the instance. This storage was also dedicated to Kafka to ensure high performance.

Note: EBS volumes larger than 170GiB are granted more bandwidth by AWS. This is explained
in the AWS user guide for EBS volume types.

3.3	Zookeeper	Cluster	Configuration

Below is the Zookeeper config file used on the three Zookeeper nodes.

5

#######

./kafka_2.13-2.6.0/bin/kafka-topics.sh --create --topic
producer-load-test --bootstrap-server node_1_ip:9092,node_2_
ip:9092,node_3_ip:9092 --replication-factor 3 --partitions 64

#######

And here is the creation command for the consumer test topic.

########

./kafka_2.13-2.6.0/bin/kafka-topics.sh --create --topic
consumer-load-test --bootstrap-server node_1_ip:9092,node_2_
ip:9092,node_3_ip:9092 --replication-factor 3 --partitions 64

########

3.4	Kafka	Cluster	Configuration

Below is the Kafka config file used on the three Kafka nodes.

3.5	Topic	Configuration

Kafka requires records to be stored in topics. We created separate topics for the producer and
consumer tests. We also deleted the topic after each test run.

Below is the creation command for the producer test topic.

#############

Config parameters are documented at https://kafka.apache.org/
documentation/#configuration

############################# Base Settings
#############################

broker.id=unique_id

zookeeper.connect=zk_1_ip:2181,zk_2_ip:2181,zk_3_ip:2181

zookeeper.connection.timeout.ms=60000

############################# Log Basics
#############################

log.dirs=/data/kafka-logs

############################# Socket Settings
#############################

listeners=PLAINTEXT://:9092

num.network.threads=24

num.io.threads=32

socket.send.buffer.bytes=-1

socket.receive.buffer.bytes=-1

############################# Group Coordinator Settings
#############################

group.initial.rebalance.delay.ms=0

#############

6

#########

./kafka_2.13-2.6.0/bin/kafka-producer-perf-test.sh --print-
metrics --topic producer-load-test --num-records num_records
--throughput -1 --record-size 100 --producer-props bootstrap.
servers=node_1_ip:9092,node_2_ip:9092,node_3_ip:9092 acks=1
buffer.memory=67108864 batch.size=65536 linger.ms=3

#########

A few notes about the command switches used in the test topic commands:

--topic

This is the name of the topic we are creating.

--replication-factor

Set to three since we have three nodes in the cluster. Each node will contain a copy of each
record committed into the cluster. Selecting a replication factor of three increases the stress on
the cluster because the follower nodes are required to act as internal consumers to replicate
records.

--partitions

Set to 64 because we found that this yields the highest throughput.

Producer Test Setup and Results
4.1	Producer	Test	Command	and	Configuration

We used the performance tests that come packaged with Kafka releases. The producer
performance test is in the Kafka bin directory, under the name kafka-producer-perf-test.sh.
Below is a sample command line for the producer test.

Four instances of the above command were run simultaneously. Since we had two load
generators, we ran two instances of this test on each load generator. We found this maximized
load on the Kafka cluster. To determine throughput (RPS), we aggregated the reported
throughput of each of the producer instances.

To determine latency, it does not make sense to aggregate latency percentiles, so we ran a single
producer with a single instance of the above command. As a result, our latency test results
should be taken as a best case.

A few comments about the switches in the sample command:

--topic

Selects the topic we write our records into.

--num-records

The number of records to write is shown as a variable because we tested with varying record
counts.

--throughput

Set to -1, which means the test executed with no limiting on the request rate. In our testing, we
found that not using rate-limiting resulted in the highest bandwidth (i.e., highest RPS).

--record-size

We used 100-byte records for all tests. We selected a small record size because it stresses
things like vCPU, memory, interconnect, etc. more than larger records, which tend to stress the
network interface.

7

Record Count r6g.xlarge r5.xlarge r5a.xlarge r6g.2xlarge r5.2xlarge r5a.2xlarge

50000000 5847850 5804823 5561190 6026173 6129683 6118690

100000000 6136060 6110560 5982410 6134607 6133523 6081900

400000000 5719797 5399067 5233680 5666380 5660707 5734730

800000000 5098367 4942530 5120800 4664100 4791267 4730640

1200000000 4955993 4571047 4291720 4391483 4315780 4391910

There are a few things to note from the data above. First, we see a slight upward slope between
the first (50 million records) and second (100 million records) data point in the graph across
most of the instances. This appears due to a warmup period on a fresh Kafka cluster. If we were
to run the first point (50 million records) a second time, we would see the RPS increase to match
the results of the second point (100 million records). Since we delete all topics between each
test run, this warmup seems related to the Java Virtual Machine or other factors external to the
topics and records we write/read during a test. Practically speaking, we should consider the RPS
of the first point to be equal to the second point.

--producer-props

These are the IP addresses of the three Kafka nodes.

--acks

Used to select how many Kafka nodes need to commit or replicate records before the leader
node sends an acknowledgement to the producer. This setting governs the durability of records.
A value of 1 is a balanced approach on durability versus performance and is a common setting.

--batch.size and --linger.ms

These are batch size and linger time. Through experimentation, we found that we gained
throughput when we increased the batch size and added some linger time. This allowed the
producer to group multiple records together and send them in one transaction, saving on
transaction overhead.

4.2 Producer Test Results

Below is a graph and table illustrating producer RPS across the various instances tested, with
RPS on the Y-axis and total records written on the X-axis (all values in millions). Since we used
100-byte records, we can also calculate the total amount of data written per test. From left
to right on the X-axis, the total amount of data written is 20GB, 40GB, 160GB, 320GB, and
480GB.

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400

M
ill

io
n

s
R

P
S

Record Count Per Producer (in Millions)

r6g.xlarge

r5.xlarge

r5a.xlarge

r6g.2xlarge

r5.2xlarge

r5a.2xlarge

Table 3. Producer
RPS Vs Record
Count

Producer RPS Vs Record Count

8

Next, notice how the lines are clustered together. The average RPS lines trend downward
as we test with higher record counts (i.e., write more data per test). This is because storage
performance becomes a bigger factor when we test with more records. This is how we expect
Kafka to work. Kafka writes its records into files. When we write to a file, the record is usually
not written to storage immediately, it is typically written to the OS page cache in memory first.
The OS decides to flush the data from memory to storage when either a certain amount of time
has passed or when a certain percentage of the page cache is full (note: there are OS settings
that can adjust this behavior; we left the defaults). What this means for our test results is that
when you write a small amount of data during the test (e.g., 50 million or 100 million records),
we are mostly writing to memory. However, when we write a large amount of data during
the test (e.g., 1.2 billion records), we are writing to both memory and storage. We know this
because when we test with large record counts, we can see IOWait periodically spike to 95%+
during test execution. On the other hand, when we test with smaller record counts, we do not
see any IOWait spikes during test execution. Since storage performance is lower than memory
performance, we see the average RPS drop due to the flushes to storage. This tells us that vCPU
performance is not as big a factor as we might have expected. As a result, the best instance to
use here is the one with the lowest cost, r6g.xlarge.

Below is a graph and tables showing the percent improvement between the r6g instances, and
the r5 and r5a instances.

The performance percentage data shows that the r6g.xlarge instances outperform the r5.xlarge
and r5a.xlarge instances. On average across all the record counts tested, the r6g.xlarge has
about a 3.73% performance advantage over the r5.xlarge, and about a 6.41% performance
advantage over the r5a.xlarge. When we look at the 2xlarge instances, on average we see the
r6g slightly underperforms. However, this could also be run-to-run variation given that we do
see the r6g.2xlarge outperform in some of the test runs.

Given these results, we concluded that it is not helpful to use larger instances. The below graphs
illustrate this point. We tested 50 million records on a AWS Graviton2 r6g.12xlarge and an x86
r5.16xlarge. Both instances have a network connection of 20Gbps.

Instance Type and Size - Performance Percent Improvement

Instance Type r6g.xlarge vs r5.xlarge r6g.xlarge vs r5a.xlarge r6g.2xlarge vs r5.2xlarge r6g.2xlarge vs r5a.2xlarge

50000000 0.74 5.15 -1.69 -1.51

100000000 0.42 2.57 0.02 0.87

400000000 5.94 9.29 0.10 -1.19

800000000 3.15 -0.44 -2.65 -1.41

1200000000 8.42 15.48 1.75 -0.01

AVG 3.73 6.41 -0.49 -0.65

Table 4. Producer
RPS Percent
Improvement Vs
Record Count

9

6.026174
6.376171

 $-

 $0.5

 $1.0

 $1.5

 $2.0

 $2.5

 $3.0

0

1

2

3

4

5

6

7

2xlarge 12xlarge

In
st

an
ce

 C
o

st
/h

r

R
ec

o
rd

s
p

er
 S

ec
o

n
d

 (r
p

s)

M
ill

io
n

s

r6g Instance Type

Records Per Second Cost/hr of Instance Size

14.945866

2.635653

0

2

4

6

8

10

12

14

16

r6g.2xlarge r6g.12xlarge

(M
ill

io
n

s
R

P
S)

/$

r6g Instance Type

r6g - Producer RPS Larger Instances

r6g - Producer RPS/$ Larger Instances

6.129681 6.328946

 $-

 $1.0

 $2.0

 $3.0

 $4.0

 $5.0

0

1

2

3

4

5

6

7

2xlarge 16xlarge

In
st

an
ce

 C
o

st
/h

r

R
ec

o
rd

s
p

er
 S

ec
o

n
d

 (r
p

s)

M
ill

io
n

s

r5 Instance Type

Records Per Second Cost/hr of Instance Size

r5 - Producer RPS Larger Instances

10

12.162065

1.569679

0

2

4

6

8

10

12

14

r5.2xlarge r5.16xlarge
(M

ill
io

n
s

R
P

S)
/$

r5 Instance Type

r5 - Producer RPS/$ Larger Instances

When we compare the r6g.2xlarge to the r6g.12xlarge, we see an increase in RPS of about
0.58%, but at a 6x higher cost. When we compare the r5.2xlarge to the r5.16xlarge, we see
an RPS increase of about 3.2%, but at an 8x higher cost. The RPS/$ graphs further show the
significant difference in value between the smaller and larger instances. This shows that using
larger instances for a Kafka cluster is a poor value. We did not test the r5a.24xlarge (20Gpbs),
but we should expect equivalent results.

To explore cost-performance, we divided the results shown in Table 3 by the instance cost listed
in Table

1. The result is shown in the graph and Table.

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400

(M
ill

io
n

s
R

P
S)

/$

Record Count Per Producer (in Millions)

r6g.xlarge

r5.xlarge

r5a.xlarge

r6g.2xlarge

r5.2xlarge

r5a.2xlarge

Producer RPS/$ Vs Record Count

Table 5. Producer
RPS/$ Vs Record
Count

11

Table 5. Producer RPS/$
Vs Record Count

Table 5. Produc From the data
in the Table 5, we created the
cost-performance graph and table
below er RPS/$ Vs Record Count

Table 6. Producer Cost-Performance
Percent Improvement

From the data in the Table 5, we created the cost-performance graph and table below.

0

5

10

15

20

25

30

35

40

0 500000000 1000000000 1500000000

%
 Im

p
ro

ve
m

en
t

Record Count Per Producer (in Millions)

r6g.xlarge vs r5.xlarge

r6g.xlarge vs r5a.xlarge

r6g.2xlarge vs r5.2xlarge

r6g.2xlarge vs r5a.2xlarge

Instance Type and Size - (Request Per Second)/$ by Instance Type and Size

Record Count r6g.xlarge r5.xlarge r5a.xlarge r6g.2xlarge r5.2xlarge r5a.2xlarge

50000000 29007192 23035012 24607035 14945866 12162069 13536925

100000000 30436806 24248254 26470841 15214799 12169688 13455531

400000000 28372009 21424869 23157876 14053522 11231562 12687456

800000000 25289519 19613214 22658407 11567708 9506482 10466018

1200000000 24583299 18139075 18989912 10891575 8563056 9716615

Cost-Perf Percent Improvement

Instance Type and Size - (Request Per Second)/$ by Instance Type and Size

Record Count r6g.xlarge r5.xlarge r5a.xlarge r6g.2xlarge

50000000 25.93 17.88 22.89 10.41

100000000 25.52 14.98 25.02 13.07

400000000 32.43 22.52 25.13 10.77

800000000 28.94 11.61 21.68 10.53

1200000000 35.53 29.45 27.19 12.09

AVG 29.67 19.29 24.38 11.37

12

The cost-performance data shows that the xlarge instances are a better value for running
Kafka. Of the xlarge instances, we see that the r6g is the best value. On average across all the
record counts tested, the r6g.xlarge has about a 29.7% cost-performance advantage over the
r5.xlarge, and about a 19.3% cost-performance advantage over the r5a.xlarge.

Below are the results for latency running a single producer with 50 million records.

As noted in the test setup section, these latency results should be taken as a best case. Overall,
we see that the 2xlarge instances appear to have lower latency than the xlarge instances. This
difference comes from the way we tested latency. We decided to run the test three times and
then averaged the P99 result of each run. We did this because when we look at the individual
run results (not shown), we see that for each instance, the first run is taken during the warm-
up period (we saw this in the throughput results above). During the warmup period, latency
is higher, and this pulls the P99 up. However, for the 2xlarge instances, the warmup period is
shorter, which explains the lower latency for the 2xlarge instances. Given this observation, we
decided to average the P99 because it allowed us to couple latency during warmup, latency
after warmup, and the warmup period into a single value.

5.33 5

9.33

2.67 2.33

5

0
1
2
3
4
5
6
7
8
9

10

r6g r5 r5a

La
te

n
cy

 (m
s)

Instance Type

xlarge 2xlarge

Single Producer Latencey p99

13

Consumer Test Setup and Results
5.1	Consumer	Test	Command	and	Configuration

The consumer performance test is available in the Apache Kafka GitHub repository, in the
release bin directory, under the name kafka-consumer-perf-test.sh. Below is a sample command
line for the consumer test.

64 instances of the above command were executed simultaneously. Since we have two load
generators, each load generator ran 32 instances of this command. To determine throughput,
we aggregated the reported throughput from each of the 64 consumer instances. We selected
64 consumer instances because this matches the number of partitions in the topic. We
experimented with higher and lower numbers of consumer instances and found that 64 gave us
the highest throughput. Going higher than 64 had no effect on the throughput, even when we
increased partitions to match.

Another point to note is that the command line has switches called --threads and --num-fetch-
threads (set to their defaults above). We experimented with these and found that they had no
effect. Therefore, we opted to run multiple instances of the test script rather than rely on this
broken (or misunderstood) threading option.

 A few comments about the switches in the sample command:

--messages

The number of records to be read. Before we started the test, we wrote this number of records
into the topic. In our tests, the prewritten messages are 100 bytes in size. As with the producer
test, we chose a small record size because it stresses things like vCPU, memory, interconnect,
etc. more than larger records, which tend to stress the network interface.

--threads

The number of processing threads. We used the default setting because we found that changing
this number did not change the results.

--num-fetch-threads

The number of fetch threads. We used the default setting of 1 because changing this number
did not change the results.

########

./kafka_2.13-2.6.0/bin/kafka-consumer-perf-test.sh --print-
metrics --topic consumer-load-test --bootstrap-server node_1_
ip:9092,node_2_ip:9092,node_3_ip:9092 --messages num_records
--threads 10 --num-fetch-threads 1 --timeout 6000000

#########

14

Instance Type and Size - Request Per Second by Instance Type and Size

Record Count r6g.xlarge r5.xlarge r5a.xlarge r6g.2xlarge r5.2xlarge r5a.2xlarge

5000000 37599800 34930633 36768425 34326289 36717222 34892250

10000000 36637633 35930167 36977333 35034267 36116167 35726033

20000000 35969800 36027767 36115200 35953267 35963633 35297533

40000000 35828567 35154200 35520833 35399667 35849800 35524800

The above results show all the instances at roughly the same RPS. This is because all these
instances are network-limited at 10Gbps. Below are the results when we use the bigger
r6g.12xlarge (20Gbps) and r5.16xlarge (20Gbps) instances.

5.2. Consumer Test Results

Below is a graph showing Consumer RPS across the various instances tested, with the RPS
on the Y-axis and total records read on the X-axis. Since we used 100-byte records, we can
also calculate the total amount of data read per test. From left to right on the X-axis, the total
amount of data read is 32GB, 64GB, 128GB, and 256GB.

34.326289

51.726932

 $-

 $0.5

 $1.0

 $1.5

 $2.0

 $2.5

 $3.0

0

10

20

30

40

50

60

2xlarge 12xlarge

In
st

an
ce

 C
o

st
/h

r

R
ec

o
rd

s
p

er
 S

ec
o

n
d

 (r
p

s)

M
ill

io
n

s

r6g Instance Type

Records Per Second Cost/hr of Instance Size

0

50

100

150

200

250

300

350

400

50
100

200
400R

ec
o

rd
s

p
er

 S
ec

o
n

d
 (I

n
 M

Il
lio

n
s)

Record Count per Consumer (64.0 Consumers)

r6g.xlarge

r5.xlarge

r6g.2xlarge

r5.2xlarge

r5a.2xlarge

r5a.xlarge

Consumer RPS vs Record Count

r6g - Consumer RPS Network Bottleneck Removed

Table 7. Consumer
RPS Vs Record
Count

15

36.717222

57.011388

 $-

 $1.0

 $2.0

 $3.0

 $4.0

 $5.0

0

10

20

30

40

50

60

2xlarge 16xlarge

In
st

an
ce

 C
o

st
/h

r

R
ec

o
rd

s
p

er
 S

ec
o

n
d

 (r
p

s)

M
ill

io
n

s

r5 Instance Type

Records Per Second Cost/hr of Instance Size

72.851631

14.139729

0

10

20

30

40

50

60

70

80

r5.2xlarge r5.16xlarge

(M
ill

io
n

s
R

P
S)

/$

r5 Instance Type

85.134645

21.381834

0

10

20

30

40

50

60

70

80

90

r6g.2xlarge r6g.12xlarge

(M
ill

io
n

s
R

P
S)

/$

r6g Instance Type

r6g - Consumer RPS/$ Larger Instances

r5 - Consumer RPS Network Bottleneck Removed

r5 - Consumer RPS/$ Larger Instances

16

Comparing the r6g.2xlarge to the r6g.12xlarge, there is an RPS increase of about 50% at a 6x
higher cost. Comparing the r5.2xlarge to the r5.16xlarge, there is an RPS increase of about 50%
at an 8x higher cost. The RPS/$ graphs further show the significant difference in value between
the smaller and larger instances. This shows that using larger instances for a Kafka cluster is a
poor value. We did not test the r5a.24xlarge (20Gpbs), but we should expect equivalent results.

5.3 Direct-Attached Storage Test Results

Finally, we looked at the difference between using EBS storage and direct-attached storage.
Direct-attached storage instances are indicated by the ‘d’ post fixed to the instance type name.
For example, an r6gd has direct-attached storage, while an r6g does not. We compared the
r6g.2xlarge to the r6gd.2xlarge, and the r5.2xlarge to the r5d.2xlarge. Below are the results.

Since the instances with direct-attached storage have higher IO bandwidth than the EBS
volumes, the downward trend is less than with the EBS volumes. Although we did not test the
r5ad.2xlarge, we would expect to see the same behavior. The P99 latency tests for 50 million
records are shown below.

6.0 6.1
5.7

4.7 4.4

6.4
6.0

5.7 5.4 5.5

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

50 100 400 800 1200

R
ec

o
rd

s
p

er
 S

ec
o

n
d

 (r
p

s)

M
ill

io
n

s

Record Count per Producer in Millions (4.0 Total Producers)

r6g.2xlarge

r6gd.2xlarge

6.1 6.1
5.7

4.8
4.3

6.3 6.3
5.6 5.6

5.3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

50 100 400 800 1200

R
ec

o
rd

s
p

er
 S

ec
o

n
d

 (r
p

s)

M
ill

io
n

s

Record Count per Producer in Millions (4.0 Total Producers)

r5.2xlarge

r5d.2xlarge

Producer RPS vs Record Count

Producer RPS vs Record Count

17

Latency results are similar between instances with EBS volume and direct-attached storage.

Closing Remarks
According to our testing, it is best to use smaller instances like the xlarge. Of all the xlarge
instances tested, the r6g had the highest performance and lowest cost when compared against
the r5 and r5a. The r6g.xlarge had about a 3.7% throughput advantage over the r5.xlarge, and
about a 6.41% throughput advantage over the r5a.xlarge. When we consider the lower cost of
the r6g.xlarge, we see about a 30% cost-performance advantage over the r5.xlarge, and about
a 19% cost-performance advantage over the r5a.xlarge. That said, this was a synthetic testing
environment, so results may vary in other scenarios. For this reason, we want to encourage
readers to experiment with running Kafka on AWS Graviton2-based instances using their
particular use cases.

2.67
3.00

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

50000000
R

ec
o

rd
s

p
er

 S
ec

o
n

d
 (r

p
s)

Record Count per Producer

r6g.2xlarge r6gd.2xlarge

2.33 2.33

0.00

0.50

1.00

1.50

2.00

2.50

50000000

R
ec

o
rd

s
p

er
 S

ec
o

n
d

 (r
p

s)

Record Count per Producer

r5.2xlarge r5d.2xlarge

Single Producer Latency P99 for 2xlarge instance size

Single Producer Latency P99 for 2xlarge instance size

