
 © Copyright ARM Limited 2009. All rights reserved.

Low Pin-count Debug Interfaces for

 Multi-device Systems
Michael Williams

*

ARM Limited, 110 Fulbourn Road, Cambridge, England.
*
michael.williams@arm.com

Abstract-IEEE Std 1149.1-2001 Standard Test Access Port and

Boundary-Scan Architecture (JTAG) is widely used as a debug

interface, providing a path for a debugger to access debug com-

ponents in complex systems-on-chip (SoCs). By its very nature

JTAG accommodates systems containing multiple devices. How-

ever, JTAG was primarily intended as a component and board

test interface, and is not ideally suited as a debug interface. Its

shortcomings have led the industry to search for an alternative.

As a result, JTAG interfaces have started to be displaced by

dedicated debug interfaces. This paper examines some of these

alternatives, and concludes that a dedicated serial wire debug

interface can be delivered with lower pin-count and higher per-

formance, whilst maintaining support for multi-device systems

and interoperability with test.

I. INTRODUCTION

JTAG [1] was originally designed and intended as a test in-

terface. The four- or five-pin interface comprises two unidi-

rectional data pins (TDI and TDO), a clock (TCK), state

machine control pin (TMS) and optional reset (TRST#). This

use of unidirectional data pins at either end of a scan-chain

connected to the registers being accessed, coupled with a

simple control state-machine allows daisy-chaining of multi-

ple JTAG devices (Fig. 1).

That JTAG is primarily meant for test is reflected in the

specification; for example, the specification requires that each

device implements a single test access port (TAP), and de-

scribes in detail control instructions (INTEST, EXTEST,

SAMPLE, PRELOAD) and scan-chain structures for imple-

menting boundary-scan testing.

JTAG is also widely used as an interface for controlling the

embedded debug features of processors and SoCs. The sim-

plicity and ubiquity of the interface, and its support for con-

necting multiple devices through daisy-chaining made it an

ideal candidate for the first generations of embedded debug.

However, it has several shortcomings, for example:

— JTAG does not make efficient use of the four pins dedi-

cated to it, for example an efficient direct memory access

TAP may only achieve a data rate of 640Kbytes/sec per

data pin at 20MHz;

— using JTAG to access multiple debug components on a

single SoC (as in Fig. 1) is not strictly allowed by the

standard;

— daisy-chaining is intolerant to a debug component and its

TAP being removed from the system, for example as a

result of power management.

Recent developments in debug interface technology have

attempted to address some of these concerns. The primary

focus has been on reducing pin-count.

II. LOW PIN-COUNT INTERFACES

An alternative to JTAG for debug should fulfil the follow-

ing requirements:

— maximum of two pins: vital for very low connectivity

devices or packages;

— support for multiple devices connected simultaneously;

— inter-operability with other debug and test interfaces;

— allow debug through legacy JTAG TAP controllers;

— high performance data rates;

— synthesis-friendly with high maximum clock rate;

— low power;

— small silicon area;

— low tools costs;

— reliable in the face of errors and safe from glitches on

pins when tools not connected.

This paper outlines three approaches to a low pin-count in-

terface, describing the third, preferred approach in more de-

tail:

— time-division multiplexed JTAG interface;

— re-visiting the JTAG standard (IEEE 1149.7);

— dedicated serial wire debug interface.

System-on-Chip

Host

controller

Debug

component

2

Access

Port 1

Protocol

converter

Access

Port 3

Debug

component

1

Debug

component

3

Access

Port 2

Fig. 1: Daisy-chain debug topology

 © Copyright ARM Limited 2009. All rights reserved.

A. Multiplexed JTAG Interface

One approach to reducing the pin-count for the debug in-

terface is to multiplex the JTAG interface in the time domain.

The JTAG interface has three functional pins (TDI, TDO

and TMS) each of which carries a data value that can be valid

on every clock cycle.

Dividing the clock by three enables each of these data val-

ues can be presented in turn on a shared data pin, thereby

reducing the pin count from four pins to only two.

This scheme has several obvious disadvantages:

— it reduces the bandwidth by a factor of three, reducing

debug performance;

— does not allow daisy-chaining of devices, making debug

of multi-device systems very difficult;

— it requires turnaround of the data pin from host to target

drive in a single data cycle, limiting the maximum oper-

ating frequency and further impacting performance.

The scheme maintains compatibility with JTAG test, but

the increased tester time is probably prohibitive.

B. Re-visiting the JTAG Standard, IEEE 1149.7

The IEEE 1149.7 Draft Standard for Reduced-pin and

Enhanced-functionality Test Access Port and Boundary Scan

Architecture [2] extends the 1149.1 standard with support for:

— multiple power modes;

— system level bypass;

— star topology;

— two-pin operation.

IEEE 1149.7 describes six classes of compliance (Fig. 2).

These classes are hierarchical, meaning that a device wishing

to benefit from the T4 two-pin operation must also implement

all of T0-T3, even though the device is targeted at debug and

not test.

This paper only provides a brief overview of IEEE 1149.7;

for a more detailed introduction, see [3].

Star topology

A star topology (Fig. 3) supports true power and clock iso-

lation; the access port or ports can be isolated from the power

and clocks of the components being debugged, continuing to

function even when power is removed from the component.

It also provides higher performance than daisy-chain to-

pology, as there is no need for un-addressed components to

be in a “pass through” bypass state.

IEEE 1149.7 provides commands to select a component to

address in star topology.

Command protocol

IEEE 1149.7 operation is controlled by command se-

quences sent over the JTAG interface. Because of the need

for backwards compatibility with IEEE 1149.1, these se-

quences consist of:

— special paths through the JTAG TAP state machine that

are benign if sent to an IEEE 1149.1 implementation that

has just been reset;

— out-of-band messaging using clock as data and data as

clock: by holding the clock signal TCK HIGH and tog-

gling the TMS signal, control messages can be sent out

of band of the data stream.

Out-of-band messages are used in two-pin operation to

change data multiplexing mode. This effectively embeds the

clock in the data signal, which is problematic for standard

synthesis flows. They are also used to provide online and

offline state selection.

IEEE 1149.7 also supports online and offline state selection

using the unlikely data sequence approach described herein in

Selecting a device from dormant mode.

Data multiplexing

In two-pin operation, IEEE 1149.7 uses only the TCK and

TMS pins. In this mode of operation, the pins are named

TCKC and TMSC, respectively. TDI and TDO data can be

multiplexed onto TMSC in a manner similar to that described

herein in Multiplexed JTAG Interface.

Thus TMSC is a bidirectional data pin. To support this,

IEEE 1149.7 specifies that TMSC is not driven for the sec-

ond phase of each clock cycle, and must either be sampled on

the rising edge of TCKC, or held by bus keepers to be sam-

pled on the falling edge.

This phase is used for turnaround on the bidirectional pin.

This need to establish a stable signal level in a half a clock

cycle impacts the maximum operating frequency of the inter-

face. (Fig. 4.)

System-on-Chip

Host

controller

D
ebug

com
ponent

3

D
eb

ug

co
m

po
ne

nt

1

Debug

component

2

Access

Port

Protocol

converter

Fig. 3: Debug star topology

1149.1 compatibility

1149.7 command protocol

system level bypass

four pin star topology

two pin with advanced scan protocols

T5

T4

T3

T1

T2

T0

data instrumentation

E
n

h
an

ce
d

d
eb

u
g

ca
p

ab
il

it
y

E
x

te
n

d
ed

 J
T

A
G

ca
p

ab
il

it
y

Fig. 2: IEEE 1149.7 compliance classes

 © Copyright ARM Limited 2009. All rights reserved.

However, a more detailed analysis of the way JTAG is

used, particularly for debug, allows optimizations to be made:

— when not in or entering a Shift state, the values on TDI

and TDO are irrelevant and can be omitted;

— when in a Shift state, TMS is held HIGH until ready to

exit the Shift state; hence TMS may be omitted;

— for many scans, only TDI or only TDO is relevant for

part or most of the scan; hence either may be omitted.

To accommodate these optimizations, IEEE 1149.7 level

T4 describes various optimized scan formats (OScan) and

segmented scan formats (SScan), use of which can improve

scan performance by a factor of at least two. The standard

does not require implementation of all scan formats.

C. Dedicated Serial Wire Debug Interface

To address the issues with JTAG, ARM Ltd. (Cambridge,

England) took a fundamentally different approach. A packet-

based protocol, Serial Wire Debug (SWD) was developed [4],

[5].

SWD replaces the four-pin JTAG debug port with a clock

plus a single bidirectional data pin, providing a dedicated

packet-based debug interface that encompasses all the normal

JTAG debug functionality.

This interface is now considered in more detail.

III. SERIAL WIRE DEBUG IN DETAIL

During the development of the ARM
®

 CoreSight™ debug

architecture [6], [7], the opportunity was taken to analyze the

areas in which the requirements for debug and trace differed

from those for test, and to design a debug interface protocol

appropriately. The result of this detailed analysis is the SWD

protocol.

Although it was developed as part of the CoreSight debug

architecture, SWD is defined as a standard independent of

CoreSight. Two versions of the protocol are defined: SWD

protocol version 1 and SWD protocol version 2.

To understand how the SWD protocol was developed, it is

necessary to first provide an overview of the CoreSight debug

architecture.

A. CoreSight debug architecture overview

The most significant change introduced with CoreSight

and SWD was a move from using a serial scan interface to

using a bus-based approach for on-chip debug control and

access.

This modular approach allows for SoCs that consist of

multiple IP blocks from multiple vendors often using multiple

clock and power domains. Each block provides register-based

access to debug configuration and status information: this

provides a more consistent programmers’ model and eases

software development. These same registers can also be ac-

cessed by the CPU itself, giving additional flexibility.

The star topology of a bus (Fig. 3) also supports true power

and clock isolation, which is important in all application ar-

eas, in particular mobile, as the market drives devices to re-

duce standby power consumption. It is possible to power-

down individual blocks of logic or control the clocks inde-

pendently, including when debugging.

ADIv5

Previous incarnations of JTAG debug ports on ARM proc-

essors were described as the ARM Debug Interface. For in-

stance, the JTAG port on ARM11™ processors is known as

ADIv4.

Decoupling the external debug interface from the internal

bus-based debug and trace infrastructure allows the interface

to be described independently.

The resulting ARM Debug Interface v5 (ADIv5) [4] allows

tools compatibility across a range of processors without re-

quiring a full implementation of the CoreSight debug archi-

tecture.

Debug Access Port

The external debug interface (for example, SWD) is de-

coupled from the internal bus-based debug and trace infra-

structure by a Debug Access Port (DAP).

Fig. 5 shows the basic structure of an ADIv5 DAP. The ex-

ternal debug interface to the SoC can be any communications

interface, such as JTAG or SWD.

The external debug interface connects to the DAP through

a Debug Port (DP), such as an SW-DP for the SWD inter-

face.

E
x
te

rn
al

 d
eb

u
g

 i
n
te

rf
ac

e

Debug Port

Access Port

Access Port

Access Port

Legacy

JTAG

component

Debug bus

System memory

Debug Access Port

Fig. 5: Debug Access Port

TCKC

TMSC

nTDI TMS TDO nTDI TMS TDO

host keep host target host keep host turn targetturn turn turnDriver

Fig. 4: IEEE 1149.7 T4 two-pin protocol, TAP.7 Advanced Protocol Optimized Scan Format 1 (OScan1)

 © Copyright ARM Limited 2009. All rights reserved.

The DAP further comprises Access Ports (APs) which can

access various slave devices, for example:

— legacy JTAG-equipped cores via a JTAG Access Port

(JTAG-AP);

— system memory via a Memory Access Port (MEM-AP),

such as the AMBA Advanced High-performance Bus Ac-

cess Port (AHB-AP) or AMBA AXI Access Port (AXI-

AP);

— bus-based debug functionality on a debug bus (including

ARM Cortex processors) via a MEM-AP, such as the

AMBA 3 Advanced Peripheral Bus Access Port

(APB-AP);

— dedicated debug or other control devices, such as a rights

manager for security-based applications, or a built-in

self-test (BIST) controller for packet-based test.

B. Serial Wire Debug protocol version 1

Decoupling the external debug interface from the internal

bus-based debug and trace infrastructure also allowed the

CoreSight developers to optimize the physical protocol to

match the external interface. As a result, a packet-based pro-

tocol was developed.

Like IEEE 1149.7 SWD protocol uses a bidirectional data

pin; however, unlike IEEE 1149.7, the host-to-target and tar-

get-to-host phases are kept quite separate in the protocol,

allowing for fewer turnarounds on this pin.

Thus the wire protocol passes data between the target sys-

tem and the debugger in a highly efficient way. Fig. 6 shows

a read. Writes from the debugger to the target system are

similarly efficient: the turnaround cycle follows the target

response but no further turnaround is needed between the

data and the next command header.

Serial Wire/JTAG Debug Port

SWD allows for an easy and risk-free migration from

JTAG, as the data signal SWDIO and clock SWCLK can be

overlaid on the JTAG TMS and TCK pins.

The Serial Wire/JTAG Debug Port (SWJ-DP) provides a

mechanism to select between JTAG and SWD interfaces.

This enables bi-modal devices that provide both SWD and

JTAG interfaces without additional pins.

In logical terms, the SWJ-DP consists of a wrapper around

the JTAG-DP and SW-DP. Its function is to select JTAG or

SWD as the interface. Fig, 7 shows such a logical arrange-

ment.

The use of a JTAG debug interface must be maintained in

where it is vital to:

— enable inclusion in an existing scan chain;

— enable the device to be cascaded with legacy devices

which use JTAG for debug, although this can also be

supported using a JTAG access port (Fig. 5);

— enable use of legacy tools, for example TAPs accessed

by Automatic Test Equipment (ATE).

An SoC fitted with SWJ-DP support can be connected to

legacy JTAG equipment without modification. If an SWD

tool is available, then only two pins are required. The two

additional JTAG pins are therefore released for alternative

functions.

The switching scheme is arranged so that an SWD debug-

ger is able to connect by sending a specific sequence on

TMS. The sequence has no effect on JTAG devices, as it is

arranged so that the JTAG TAP never leaves the “top-4”

states (Test-Logic-Reset, Run-Test/Idle, Select-IR-Scan and

Select-DR-Scan). SWD defines a similar SWD-to-JTAG se-

quence.

C. Multi-drop Serial Wire Debug

SWD protocol version 1 is a simple point-to-point architec-

ture, supporting connection between a single host and a single

device.

The only way you can access multiple devices is by using

multiple, independent connections from the host. In more

complex systems, this has a number of disadvantages:

— it complicates the physical connection standard, by
having variants with different numbers of connections;

— it increases the number of pins required on a package
with multiple dies inside;

1

S
ta

rt

A
P

n
D

P

0 1

R
n

W A[2:3]

0 0 1 0 1

P
ar

it
y

S
to

p

P
ar

k

SWCLK

SWDIO

T
u

rn
ar

o
u

n
d

Response

(“OK”)
Data and parity

T
u

rn
ar

o
u

n
d

1 0 0

host

Id
le

target host

d[0] d[31] par···

Id
le

/S
ta

rt

Driver turn turn

Fig. 6: Serial Wire Debug protocol, read of the ID register

JTAG-DP

SWD/

JTAG

select

SWJ-DP

TMS

TCK

TDO

TDI

SW-DP

A
cc

es
s

P
o

rt
s

Fig, 7: SWJ-DP conceptual model

 © Copyright ARM Limited 2009. All rights reserved.

— it increases the number of pins required on the connector
on the device PCB; this may be unacceptable where size
is a limiting factor;

— it makes it difficult to integrate multiple independent
platforms accessed by SWD into the same chip.

To solve requires a connection that can be shared between

multiple SWD devices. SWD protocol version 2 [8] adds

such a multi-drop capability, which:

— enables a two wire host connection to communicate si-

multaneously with multiple devices;

— is synthesis friendly, implemented using single-edge

clock and separate bidirectional data;

— permits a device to power down completely while that

device is not selected;

— is backwards-compatible: provision of multi-drop sup-

port in a device does not break point-to-point compatibil-

ity with existing host equipment that does not support

multi-drop extensions;

— prevents multiple devices from driving the wire simulta-

neously, and continues to support the wire being actively

driven both HIGH and LOW, maintaining a high maxi-

mum clock speed;

— enables multi-drop connections sharing a connection

with devices that do not implement SWD;

— enables an effectively unlimited number of devices to be

connected simultaneously, subject to electrical con-

straints (Fig. 8).

Dormant operation and interoperability with other protocols

SWD protocol version 2 defines a dormant mode operating

state. Using dormant mode allows the target to be placed into

a quiescent state. A debugger selects the required device and

protocol, and when it has finished with the device, places it

back into dormant mode.

There is no requirement for all the devices on the shared

connection to implement SWD protocol. They must imple-

ment a protocol that provides a quiescent state with a mecha-

nism for entering and leaving that state that is compatible

with, but not necessarily identical to, the SWD dormant mode

selection protocol. In IEEE 1149.7 a compatible dormant

mode is known as offline state.

This allows multiple JTAG TAP, SWD, and SWJ devices

to share a physical connection to a host, as shown in Fig. 9.

These different devices may be in different packages, on dif-

ferent dies in a single package, or on a single die: for in-

stance, implementing CoreSight debug and boundary-scan

test with a single connection.

Selecting a device from dormant mode

When in dormant mode, a device is listening for a selection

message. However, some other device will be actively using

the interface, and hence it is important that data traffic on the

interface is not mistaken for the selection message.

 In choosing a selection message, the designers of multi-

drop SWD were aware of the requirement to support multiple

protocols, in particular IEEE 1149.7.

IEEE 1149.7 out-of-band messages were rejected as they

require complicate the implementation by using clock as data.

Hence the designers of multi-drop SWD chose an unlikely

data sequence approach. The selection message consists of a

128-bit selection alert, followed by a protocol selection

command. This selection alert method has been adopted by

IEEE 1149.7, and multi-drop SWD has adopted the IEEE

1149.7 protocol selection command, ensuring compatibility

between the two protocols.

The selection alert sequence was set to 128-bits long to

Host

controller

Protocol

converter

Multi-

drop

Serial

Wire

SoC 2

S
o
C

 3

S
o
C

 1

Fig. 8: Multi-drop Serial Wire Debug

System-on-ChipSystem-

on-Chip

System-

on-Chip

System-

on-Chip

System-

on-Chip

JTAG

TAP
(1149.1)

JTAG TAP
(1149.7 online/

offline operation)

SW-DP
(multi-drop)

Other

protocol
SWJ-DP
(multi-drop)

SW-DP
(multi-drop)

wrapper

TMS

TCK

TDI

TDO

T
M

S

T
C

K

T
D

I

T
D

O

D
a

ta

C
lo

ck

S
W

D
IO

S
W

C
L

K

T
D

O

T
D

I

S
W

D
IO

S
W

C
L

K
S

W
D

IO

S
W

C
L

K

T
M

S

T
C

K

T
D

I†

T
D

O
†

CoreSight

Debug

Boundary

Scan Test

† Note: TDI

and TDO are

optional for

IEEE 1149.7

class T4.

Fig. 9: Multiple JTAG, SW, SWJ (multi-drop) and other protocol devices on

a shared connection

 © Copyright ARM Limited 2009. All rights reserved.

make it vanishingly unlikely for the same sequence to appear

in the data traffic of another protocol.

The selection alert sequence can be generated by imple-

menting a linear feedback shift register (LFSR). The se-

quence starts with a zero start bit and continues with the out-

put of the LFSR. This provides a very efficient implementa-

tion (Fig. 10).

IV. CONCLUSIONS

The development of the Serial Wire Debug interface stan-

dard and protocol has provided an alternative to JTAG for

debug, which has the additional benefits of reduced pin count

and higher performance. It meets all the requirements for a

debug interface, offering the following features and advan-

tages:

— only uses two pins: this is vital for very low connectivity

devices or packages;

— supports multiple devices connected simultaneously us-

ing the multi-drop extensions;

— is inter-operable with other debug and test interfaces;

— provides debug communication to JTAG TAP control-

lers;

— enables the debugger to become another AMBA bus

master for access to system memory and peripheral or

debug registers;

— high performance data rates: approx. 1.5Mbytes/sec at

20MHz with a single data pin;

— low power: no extra power or ground pins required;

— small silicon area: approx. 2,500 additional gates;

— synthesis-friendly with high maximum clock rate: single-

edge clock and separate bidirectional data with full cycle

turnaround;

— low tools costs: < $100 build costs;

— reliable and safe: built-in error detection.

SWD offers a risk-free migration path for JTAG-based de-

bug through the SWD/JTAG debug port and the multi-drop

extensions.

A debug architecture is ultimately only as good as the tools

ecosystem that supports it.

As SWD is a standard interface backed by the industry’s

leading IP provider, the software developer can count on a

wide choice of interoperable tools from many tool vendors.

Since its introduction in 2003, the CoreSight architecture

has rapidly gained support in the marketplace. SWD is sup-

ported by major tools vendors and is widely implemented in

devices ranging from low-cost mass-market microcontrollers

to complex SoCs, making SWD the de facto standard for a

low pin-count debug port.

ACKNOWLEDGEMENT

The author gratefully acknowledges the contributions and as-

sistance of colleagues at ARM Limited.

REFERENCES

[1] IEEE, “Standard Test Access Port and Boundary-Scan

Architecture,” IEEE Std 1149.1-2001, 2001.

[2] IEEE, “Draft Standard for Reduced-pin and Enhanced-

functionality Test Access Port and Boundary Scan

Architecture,” IEEE P1149.7, unpublished.

[3] S. Lau, “Reinventing JTAG for SoC debugging,”

Embedded.com, August 2008. [Online] Available:

Embedded.com http://www.embedded.com/design/

testissue/210200584?_requestid=309116 [Accessed

Aug. 28, 2009].

[4] ARM Ltd., “ARM Debug Interface v5 Architecture

Specification,” ARM IHI 0031, 2006. [Online]

Available: http://www.arm.com/products/solutions/

ADISpecification.html

[5] E. Ashfield, et al, “Serial Wire Debug and the CoreSight

Debug and Trace Architecture.” [Online] Available:

http://www.arm.com/miscPDFs/15531.pdf [Accessed

Aug. 28, 2009]

[6] ARM Ltd., “CoreSight Architecture Specification

Rev 1.0,” ARM IHI 0029B, 2005. [Online] Available:

http://www.arm.com/products/solutions/coresight_spe

c.html

[7] W. Orme, (2008) “Debug and Trace for Multicore

SoCs.” [Online] Available: http://www.arm.com/

pdfs/CoresightWhitepaper.pdf [Accessed Aug. 28,

2009]

[8] ARM Ltd., “ARM Debug Interface v5 Architecture

Specification ADIv5.1 Supplement,” ARM DSA09-

PRDC-008772, 2009. [Online] Available:

http://www.arm.com/products/solutions/ADISpecifica

tion.html

PROPRIETARY NOTICE

ARM is a registered trademark of ARM Limited. The ARM

logo, AMBA, Cortex and CoreSight are trademarks of ARM

Limited. All other products or services mentioned herein may be

trademarks of their respective owners.

1 0 0 1 10 0

Selection

Alert

sequence

Fig. 10: LFSR for generating Selection Alert sequence

http://www.embedded.com/design/testissue/210200584?_requestid=309116
http://www.embedded.com/design/testissue/210200584?_requestid=309116
http://www.arm.com/products/solutions/ADISpecification.html
http://www.arm.com/products/solutions/ADISpecification.html
http://www.arm.com/miscPDFs/15531.pdf
http://www.arm.com/products/solutions/coresight_spec.html
http://www.arm.com/products/solutions/coresight_spec.html
http://www.arm.com/pdfs/CoreSightWhitepaper.pdf
http://www.arm.com/pdfs/CoreSightWhitepaper.pdf
http://www.arm.com/products/solutions/ADISpecification.html
http://www.arm.com/products/solutions/ADISpecification.html

	Low Pin-count Debug Interfaces for Multi-device Systems
	Introduction
	Low Pin-count Interfaces
	Multiplexed JTAG Interface
	Re-visiting the JTAG Standard, IEEE 1149.7
	Star topology
	Command protocol
	Data multiplexing

	Dedicated Serial Wire Debug Interface

	Serial Wire Debug in Detail
	CoreSight debug architecture overview
	ADIv5
	Debug Access Port

	Serial Wire Debug protocol version 1
	Serial Wire/JTAG Debug Port

	Multi-drop Serial Wire Debug
	Dormant operation and interoperability with other protocols
	Selecting a device from dormant mode

	Conclusions
	Acknowledgement
	References
	Proprietary Notice

