
extra

Seen Holistically in the
Development Process

E/E DESIGN

E/E Architecture

Real-time Software
Enablement in Zonal Controllers
In future zonal E/E architectures, dedicated ECUs will handle the interzonal communication of

data as well as its uplink to the central compute. Arm describes the consolidation of real-time

software as an important requirement – also for Safety Islands in heterogeneous system-on-chip

designs, such as in cockpit assemblies or ADAS.

COVER STORY E /E ArChItECtUrE

2

E/E Architecture

WrIt tEN BY

Bernhard Rill
is director of automotive

 partnerships in the EMEA
region of Arm in Munich.

James Scobie
is director of product

management within Arm`s
Automotive Line of Business

in Cambridge (UK).

© top images | adobe.stock.com | ATZelektronik

g The automotive industry is cur-
rently experiencing a disruptive period.
New ADAS features – and the general
move towards autonomous driving –
are significantly increasing the num-
ber of functions in vehicles. Consumer
electronics, such as the cell phone, are
influencing consumer needs in the car,
which, like the smartphone, is expected
to update and improve over its lifetime

from the end user’s perspective. This is
creating the stimuli for the automotive
world to move towards the Software-
Defined Vehicle (SDV). The rise of SDVs
and ever-evolving consumer demands
are going hand-in-hand with – and often
driving – the changes in E/E architecture
in the vehicle.

These architectures are migrating
from the traditional distributed ap -

proach for ECUs through the cur-
rent state-of-the-art domain controller
architecture to, ultimately, a zonal
 architecture with high-performance
 central pro cessing systems. One clear
goal of this architectural change is to
minimize the absolute number of ECUs.
The software-defined functions will be
located in the central compute units,
and the zonal controller platforms

3

 implement the signal-to- service con-
version in order to abstract sensor and
 actuator data.

Arm addresses the automotive sector
with a dedicated IP product line. This
includes the Cortex-A computing cores
for the highest performance requirements,
-R for real-time and safety applications,
and -M for highly efficient functions,
particularly in microcontrollers. They
are used in current ECUs but are also
capable of enabling both domain and
zonal architectures.

From a software enablement per spec-
tive, there is a broad trend towards de -
velopment in the cloud, often referred
to as cloud-native, but always aimed
at deployment on an embedded sys-
tem in the vehicle. Software enable-
ment in vehicles is addressed by the
SOAFEE initiative in collaboration
between automotive and semicon-
ductor manufacturers, open source
and independent software and cloud
 providers [1].

REAL-TIME SOFTWARE
INTEGRATION OPTIONS

Automotive systems are frequently
built with real-time operating sys tems
using Autosar APIs, both in classic

and adaptive forms as their standard
software stack. However, there are
also other real-time operating systems
that are used and deployed in automo-
tive systems (e.g. Green Hills Software,
uVelosity, Integrity, Blackberry QNX,
ESol, Windriver VXworks, Zephyr, etc.).
 Furthermore, there are simple bare metal
applications that directly run without
any abstraction level.

Automotive real-time software inte-
gration can be deployed across a diverse
range of compute platforms. These range
from simple MCUs to highly complex
Systems-on-Chip, FIGURE 1.

However, automotive compute scal-
ability faces some challenges. Due to
the recent chip shortage, it has been
 difficult for OEMs to maintain supply
of various parts needed in vehicles
today. In particular, sourcing existing
8-bit/16-bit compute platforms has
been difficult, and if available, they
have been relatively expensive. To
ensure supply stability and the contin-
ued availability of the silicon, OEMs
are migrating their legacy software to
power-efficient 32-bit compute based
on Arm Cortex-M processors, for
example.

This is part of a wider trend to uplift
legacy software to 32-bit compute, as

it provides both access to a common
compute platform and security of sup-
ply through availability from multiple
semiconductor vendors that offer Arm-
based MCUs. Integration of 8-bit/16-bit
applications can be done with either
simple proprietary Real-Time Operat-
ing Systems (RTOS) or classic Autosar
software stacks.

Additionally, OEMs want to design
their system in a way that gives them
freedom to deploy software functions
variably depending on available com-
pute resources and according to their
timing behavior. This is summarized
under the term portability/consoli-
dation. When it comes to these real-
time soft ware integration principles,
cohe sion and separation have to be
distinguished:
 – Cohesion refers to applications that
are closely related, rely on strong
 coordination and share a common
development base, with example
implementations including Classic
Autosar featuring the platform flexi-
bility principle – the binary update
of software components – and Autosar
CP-Flex with Logical Timing Exten-
sion (LTE) integration.

 – Separation, like Exception Level 2
(EL2) separation, applies to distinct

FIGURE 1 Automotive compute scalability (© Arm Ltd)

COVER STORY E /E ArChItECtUrE

4

workloads that are developed sepa-
rately and therefore built on indepen-
dence as a principle. The overall aim
is to reduce ECU count. The software
stacks used in the separate integra-
tions may still use common implemen-
tations like Classic Autosar, but must
remain independent.

EL2 SEPARATION
WITH MICROCONTROLLER
HYPERVISOR

Cohesion and separation integration
options commonly support Freedom
From Interference (FFI) from both a
 spatial and temporal perspective, with
individual software updates possible
for dedicated building blocks.

TABLE 1 helps understand some of
the differences between the cohesion
and the separation integration options.
It is up to the integrator to decide which
consolidation option is most suitable.
In the next section, we focus on EL2
 separation, which is supported by the
Armv8-R architecture.

CORTEX-R IN
AUTOMOTIVE SYSTEMS

The introduction of the Armv8-R
 architecture was the first to enable
the hardware separation of tasks into
Virtual Machines (VMs), which can
 represent multiple independent guests.
The approach is based on Physical
 Memory System Architecture (PMSA)
using additional exception levels

and a two-stage MPU ensuring the
 real-time characteristics of the proces-
sor, FIGURE 2.

In a fully virtualized system with
 Virtual Memory System Architecture
(VMSA), the software can be developed
without any knowledge of other VMs.
However, this approach can result in
the loss of determinism. Within the
Armv8-R architecture, the sep aration
offered with the PMSA solution can
maintain real-time deter minism but
requires users to be aware of other
VMs. Furthermore, access to shared
resources should be orchestrated.

Armv8-R CPUs support this real-
time virtualization capability, with
 Cortex-R52+ offering additional visibil-
ity to a system of more transactions in
order to enhance control of the resources
in a virtualized system.

Within state-of-the-art automo-
tive silicon designs, the existing
Armv8-R products (Cortex-R52 and
Cortex-R52+) are integrated in two
different types:
 – Cortex-R class, which is the primary
processor within designs that can be
referred to as MCUs

 – Armv8-R CPUs, which are used for

TABLE 1 Cohesion and separation – comparing the characteristics of consolidation options (© Arm Ltd)

Feature Classic Autosar EL2 separation

Architectural
freedom

Integration options are based on classic Autosar options
(e.g. FlexCP), normally a software stack is pinned to (a) CPU(s)

EL2 separation allows to host several virtual machines
within a cluster or even a CPU (with additional scheduling
 mechanisms). the toolchain needs to be enhanced though
(no standardization as of now)

System supervision/
exception handling

Supervision opportunities minimized as there is no
EL2 exception level

EL2 separation allows hierarchical supervision
(e.g. independent shutdown/restart of VMs)

Heterogenous SW
platforms support

All software artefacts should at least support similar
Autosar architecture features. Preferably they are of
the same classic Autosar version

Different software stacks (e.g. classic Autosar with different
versions and different suppliers, bare metal code, FreertOS,
etc.) can be integrated

Memory requirements
Every stack maintains the existing memory footprint as
part of the Basic Software (BSW) stack architecture

Potential optimization of duplicated BSW software components
(e.g. communication stacks)

Software suppliers
Integration is expected to be limited to one classic
Autosar vendor (detailed analysis needs to follow)

Flexible model allows sourcing from different software vendors

Toolchain
Classic Autosar has a well-established mature tool
chain. testing is done as a single monolithic system

EL2 separation integration toolchain needs to be established,-
further standardization is beneficial. Integration and testing
can be done at VM level granularity

FIGURE 2 Armv8-R Cortex-R exception levels (© Arm Ltd)

5

the real-time compute and within the so-
called Safety Island of heterogenous
SoC (System-on-Chip) designs, with
an other CPU block in the design
that is responsible for the high-per-
formance compute tasks.

Based on the versatility of the
Armv8-R CPUs, a very flexible deploy-
ment of soft ware artefacts is possible.
Since the Arm IP is widely used in

various SoC designs, there are now
many software ecosystem partners
that have developed products for
Armv8-R CPUs. These in clude Etas,
Elektrobit, OpenSynergy, Green Hills
Software, Kernkonzept, Vector, and
Sysgo.

To better understand the EL2 separa-
tion options, Arm has released a white
paper titled ‘Best practices for Armv8-R

Cortex-R52 software consolidation’
with ETAS. The white paper is avail-
able for download at [2].

The paper conveys an overview
of how the integration of real-time
 software functions based on EL2
 separation can be achieved. FIGURE 4
shows relevant applications and the
Armv8-R separation technique used
in each case.

FIGURE 3 Potential zonal-controller use cases for SOP 2028 (© Arm Ltd)

TABLE 2 Integration of real-time software functions based on EL2 separation. Applications with the respective Armv8-R separation technology (© Arm Ltd)

Application type Interrupt virtuaIization Virtual processor cores
Para-virtualization/
trap-and-emulate

Example applications

Ultra-low latency
hard real-time

No No Yes, if the application allows Powertrain, braking

Low-latency hard
real-time

Yes, dynamic scheduling
may be needed

Yes, dynamic scheduling
may be needed

Yes, if the application allows Other chassis

Latency focused
real-time

Yes Yes Yes, if the application allows
General body functions (e.g.
 immobilizer, ambient lighting, etc.)

Best effort Yes Yes Yes
Convenient body functions
(e.g. road noise suppression)

COVER STORY E /E ArChItECtUrE

6

The Future
of Automotive
is Built on Arm

arm.com

Arm has published another white
paper that focuses on device assignment,
including how on-chip modules - such
as communications peripherals, memory
or hardware security modules - can be
assigned to individual independent
guests and virtual machines [3].

USE CASES 2025
AND 2028 OUTLOOK

After considering all the integration
options for software consolidation, the
question is which use cases and scenar-
ios OEMs want to consolidate. Starting
from 2025, many leading OEMs will

move to a zone-based EE architecture.
This move will be driven by the fact
that the wiring harness is too complex
and needs to be split into multiple spa-
tial areas. Once this is done, the Zonal-
Controller platforms are important to
ensure highly efficient networking,
such as converting CAN, LIN or Flex-
ray to Ethernet, and to direct intelli-
gent power – via smart fuses – to the
appropriate area of the car. More over,
the platforms are used to drive some
simple I/O-related body funtions
based on 32-bit classic Autosar appli -
cations.

Zonal-Controller platforms are a
 perfect transition point from signal-

based to service-based communica-
tions. Currently, the industry is investi-
gating how to use Zonal-Controller plat-
forms for a Start of Production (SOP)
2028. Next to the network and simple
IO abstraction applications mentioned
above, investigations are focused on
three additional areas, FIGURE 3:
 – Pre-processing of sensor data
 – Integration of high-integrity
chassis functionality

 – Cabin-/interior-driven use cases.
Aside from the SOP-2028 timeframe,
the authors see further func tionality
requirements that need to be hosted
in the Cortex-R-based Safety Island of
heterogenous SoCs, FIGURE 4.

The Future
of Automotive
is Built on Arm

arm.com

https://www.facebook.com/Arm
https://www.arm.com/
https://www.linkedin.com/company/arm/
https://www.instagram.com/Arm/
https://twitter.com/i/flow/login?redirect_after_login=%2FArm
https://www.youtube.com/user/Armflix

SUMMARY

This outlook on the future of E/E archi-
tecture development emphasizes the
need for further real-zonal software in -
tegration; a focus on zone controllers
and the Safety Islands of heterogeneous
SoCs. The Armv8-R CPU family is promi-
nently used in this compute class. Invest -
ment in this product line will help drive
software reuse across current and future
platforms over the long term. As the auto -
motive industry moves towards SDVs
and ever more complex compute require-
ments, Arm see their commitment to the
development of this product line as being

particularly important for future automo-
tive platforms.

REFERENCES
[1] Scalable Open Architecture for Embedded Edge
(SOAFEE) project; https://www.soafee.io/; access:
April 12, 2023
[2] Paul Austin, Andrew Coombes,Paul hughes,
James Scobie, Bernhard rill: Best practices for
Armv8-r Cortex-r52+ software consolidation; Arm/
Etas White Paper, https://armkeil.blob.core.win-
dows.net/developer/Files/pdf/white-paper/best-
practices-for-armv8-r-cortex-r52-st2-whitepaper.
pdf; access: April 12, 2023
[3] Alexandre romana: Introducing device virtualiza-
tion principles for real-time systems; Arm White Paper,
https://community.arm.com/arm-community- blogs/b/
automotive-blog/posts/device-virtualization- principles-
for-real-time-systems; access: April 13, 2023

FIGURE 4 Potential Safety Island SOP 2028 use cases (© Arm Ltd)

COVER STORY E /E ArChItECtUrE

8

IMPRINT
Special Edition 2023 in cooperation with Arm,
110 Fulbourn Road, Cambridge, UK; Springer Fachmedien
Wiesbaden GmbH, Postfach 1546, 65173 Wiesbaden,
Amtsgericht Wiesbaden, HRB 9754, USt-ldNr. DE81148419

MANAGING DIRECTORS:
Stefanie Burgmaier | Andreas Funk | Joachim Krieger

PROJECT MANAGEMENT: Anja Trabusch

COVER PHOTO:
© [top images | adobe.stock.com | ATZelektronik

https://www.soafee.io/
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/best-practices-for-armv8-r-cortex-r52-st2-whitepaper.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/best-practices-for-armv8-r-cortex-r52-st2-whitepaper.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/best-practices-for-armv8-r-cortex-r52-st2-whitepaper.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/best-practices-for-armv8-r-cortex-r52-st2-whitepaper.pdf
https://community.arm.com/arm-community-%C2%ADblogs/b/automotive-blog/posts/device-virtualization-%C2%ADprinciples-for-real-time-systems
https://community.arm.com/arm-community-%C2%ADblogs/b/automotive-blog/posts/device-virtualization-%C2%ADprinciples-for-real-time-systems
https://community.arm.com/arm-community-%C2%ADblogs/b/automotive-blog/posts/device-virtualization-%C2%ADprinciples-for-real-time-systems

