
1

Blending DSP and ML features
into a low-power general-purpose
processor – how far can we go?
Joseph Yiu, Distinguished Engineer, Arm

White Paper

With increasing signal processing requirements in various
types of IoT and embedded systems, we have seen a
number of new chips on the market that combine both
a digital signal processor (DSP) and a general-purpose
processor to address these increased processing demands.
While these suit high-performance devices where silicon
area and power are less of a concern, small embedded
devices and could be difficult to program (e.g. need
multiple toolchains due to the heterogeneous nature)
and can have limitations.

To address this challenge, Arm has been working
on technologies that boost the signal processing
and machine learning capabilities for future embedded
processors. In this paper, we will look at how the Arm
Cortex-M55 processor with Helium technology compares
to features found on traditional DSPs, and some
of the fundamental differences between VLIW (Very Long
Instruction Word) architecture and the Helium approach
to the processor’s pipeline design. We will also look into
how the processing requirements affect the processor’s
level-one memory system design and system
design considerations.

https://developer.arm.com/architectures/instruction-sets/simd-isas/helium

2

1. Background
While machine learning technologies are getting a lot of attention in the industry,

these often come with increasing needs for traditional compute, in particular around

signal processing areas, as these two types of computing tasks often go hand in hand.

For example, in voice command control applications, a range of signal processing tasks

like noise cancellation and beamforming are needed to provide high-quality data input

for the machine learning processing, which is often carried out by neural networks.

We have seen a number of projects using Arm Cortex-M4, Cortex-M7 and Cortex-M33

processors demonstrating keyword spotting and simple voice command control.

As customer’s expectation increases over time, there is a need to implement more

sophisticated algorithms requiring higher processing capability, allowing more features

to be added. In the context of keyword spotting, this improves the quality and number

of keywords to be detected.

Of course, some system-on-chip (SoC) designers would just say “let’s add a DSP into this

chip” as a natural way to improve compute performance, especially with some

of the modern DSPs that can deliver very high processing capabilities. However, doing

so could potentially end up with a relatively large and power-hungry SoC design and break

compatibility with existing software. Most of the IoT devices need a general-purpose

processor to handle IoT software stacks, security and general control operations. Combining

signal processing and ML capabilities by extending embedded general purpose architecture

would bring many benefits, allowing lower cost and complexity while benefiting from the

same programer’s model.

Fig. 1. Simple voice
command control might
involve a range of signal
processing and ML
operations

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33

3

2. What’s New?
To address these signal processing and machine learning workloads needs for the next

generation of deeply embedded systems, Arm has been busy working on a new technology

called Arm Helium technology, a vector extension designed for low-power embedded

systems such as an Arm Cortex-M processor. Helium was announced in 2019, and the

first processor supporting Helium, a part of the Armv8.1-M architecture, is the new

Cortex-M55 processor.

CORTEXM55

TruztZone for Armv8-M

Nested vectored
interrupt controller

Wake-up
interrupt controller

CPU
Armv8.1-M mainline

Memory
protection unit

Performance
monitoring unit

Coprocessor
interface

Arm Custom
Instructions

JTAG / Serial
wire debug

Breakpoint
unit

ETM
trace

ITM
trace

Peripheral
AHB

Interface
protection

I-cache,
D-cache

Data
watchpoint

I-TCM,
D-TCM

Helium

FPU

DSP

ECC RAS

AXI-5
master

Fig. 2. Arm Cortex-M55
processor

The Cortex-M55 processor is the first Armv8.1-M processor. With Helium, typical signal

processing performance can be up to 5x of the previous Cortex-M4, and neural network

processing performance can be up to 15x of Cortex-M4 processor.

Please note that the new DSP extension, Helium is different from previous Armv7E-M

DSP extensions in Cortex-M processors. Previously some of the Cortex-M processors

like Cortex-M4, Cortex-M7, Cortex-M33 and Cortex-M35P processors already have

signal processing capability supporting in-register SIMD extension using general-purpose

registers. This allows the 32-bit internal datapath to be used for two 16-bit or four

8-bit data processing. While this DSP extension enables basic signal processing in small

Cortex-M systems, this is not enough for the increasing workload and new processing

requirements in machine learning applications. In Helium, the vector size is 128-bit and there

is support for more data types and the instruction set support in Helium is much richer.

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m55
https://developer.arm.com/architectures/instruction-sets/dsp-extensions/dsp-for-cortex-m

4

3. Signal Processing without VLIW
To enable higher processing capability in the Cortex-M55 processor, various innovative

approaches have been developed and utilized. Many traditional techniques used by DSP

for enhancing processing cannot be used on Cortex-M processors today. For example,

many DSP architectures enable high performance by utilizing VLIW (Very Long Instruction

Word) pipeline designs with two to five parallel execution slots, with different ranges

of computational hardware for each slot.

Due to the nature of VLIW approach, software must be recompiled when moving between

DSPs of different performance points. Whereas in Cortex-M, the software architecture

generally follows upward compatibility to allow compiled program binaries to be reused

on different processors, even if it might not be fully optimized without recompilation.

Fig. 3. VLIW (Very
Long Instruction
Word) in DSP
vs SIMD (Single
Instruction
Multiple Data) in
the Cortex-M55
processor

Helium architecture uses the Single Instruction Multiple Data (SIMD) technique, which

is another way to increase processing performance. By using the SIMD approach,

it is possible to design multiple processors with the same Helium architecture, maintaining

full binary compatibility and to optimize the microarchitecture at different performance

points, enabling ecosystem partners to make the most from their investments. SIMD

approach is not only limited to Arm processors – some DSP also use the SIMD approach,

and in some cases use a combination of SIMD and VLIW to maximize performance.

To enable better reusability, Helium and the Cortex-M55 processor are designed

to be based on a conventional SIMD approach and utilize the vector extension

and pipeline optimization techniques to enable higher processing performance.

It should be noted that Helium is not the only DSP extension in Arm. Arm Cortex-A

processors have support for Neon (Advanced SIMD) for many years and SVE/SVE2 more

recently. Instead of just porting Neon to Cortex-M, the Helium extension is a new design

tailored for embedded architectures constraints. There are some similarities and differences

when comparing Helium and Neon:

5

Similarities between Helium and Neon Differences between Helium and Neon

	� Registers in the floating-point unit are

reused as vector registers

	� Vector registers have size of 128-bit

	� Some vector instructions are common

	� Helium only has 8 vector registers

	� Many Helium instructions use both

vector and scalar registers

In Neon only a few instructions

use both

	� Helium support new data types

that Armv7-A/Armv8.0-A Neon does

not support (e.g. fp16)

	� Some features like low-overhead-

branches, predication are not available

in Neon

	� Neon has half vector size (64-bit) for

narrowing/widening, and interleaved-3

load/store. These are not supported

on Helium

	� Different widening/narrowing schemes

4. Key Design Goals
The key objective of the Cortex-M55 processor is not to get the highest signal processing

and ML performance. Instead, efficiency is the key goal. At the same time, the Cortex-M55

design also needs to meet the requirements of a traditional Cortex-M processor including:

	 �Real-time/deterministic behaviour

	 Security

	� Ease-of-use and easy software migration

	� Being cost-effective

To keep the Cortex-M55 processor energy-efficient and fit within the power budget

for the majority of IoT endpoint systems, the Cortex-M55 processor internal datapath

for its vector extension is 64-bit, which means it takes two clock cycles to operate

on a 128-bit vector. However, the architecture behind Helium allows a processor’s

implementation to overlap execution cycles to enhance performance, providing that there

are no hardware resource conflicts.

6

In a lot of signal processing functions (we refer them as DSP kernels), we often see

code sequences having memory accesses instructions interleaved with data processing

instructions. For example, in a simple FIR filter (Finite Impulse Response), we would have

a sequence of interleaving vectored load and vectored multiply-accumulate.

In the Cortex-M55 processor, such code sequence can take advantage of the pipeline

design, which allows the execution stage of vector data to overlap – when loading the

second half of the vector data from memory, the multiply-accumulate operation can

be carried out on the first half of the data loaded from memory in the previous clock

cycle. Such an arrangement enables the vector multiply-accumulate and vector load-

store units to be occupied at every clock cycle, resulting in higher energy efficiency.

In best instruction combinations, the Cortex-M55 processor can reach either.

	 �Two 32-bit load and MAC per cycle, or

	 Four 16-bit load and MAC per cycle, or

	� Eight 8-bit load and MAC per cycle

The instruction overlapping is not limited to the parallelism of memory accesses and vector

processing. Cortex-M55 microarchitecture adopts a partition of the vector instruction set

based on hardware resource requirements into separated instruction groups (e.g. a vector

multiply and a vector shift are in different instruction groups). In simple terms, the pipeline

partition allows overlapping of instructions belonging to vector load/store, vector integer,

and vector floating-point categories.

In some cases, instruction overlapping cannot take place due to two adjacent instructions

using the same hardware resource. This is called structural hazard. To help performance,

additional unrolling techniques can be applied to optimize overlapping. As an example, here

is a single precision floating complex dot product. The naive version would be written

as following:

Fig. 4. Overlapping
pipeline design
in Cortex-M55
processor allows
memory access and
multiply-accumulate
operations to be
carried out at the
same time

7

vmov.i32
wlstp.32

vldrw.u32 q0, [r0], #16
q1, [r1], #16
q7, q0, q1, #0

q7, q0, q1, #90

vldrw.u32
vcmla.f32

vcmla.f32

letp lr, 2b

@ 1st complex vector load
@ 2nd complex vector load, no overlap
@ 1st part of the complex multiplication,
@ accumulation, can be overlapped with vldrw
@ 2nd part of the complex multiplication,
@ accumulation, no overlap
@ low overhead while loop end

vadd.f32
vadd.f32

s0, s28, s30

q7, #0x0
lr, r2, lf

@ accumulator zeroing
@ low overhead while loop start tail predication

s1, s29, s31

@ partial parts summation
@ real part
@ imaginary part

2b:

1f:

Fig. 5. Non-optimized
code due to back-to-
back instructions that
use same hardware
resources

Fig. 6. Back to back
vector operations
of the same group
cannot overlap

The use of back-to-back vector load (vldrw.u32) and back-to-back complex vector

MAC (vcmla.f32) instruction does not allow this complex dot-product code sequence

to reach the best of the Cortex-M55 performance because instructions belonging

to the same group cannot be overlapped.

However, by unrolling the loop and using load-scheduling techniques to avoid back-to-back

VLRDW and VCMLA, the same loop can run with all instructions being overlapped.

vldrw.u32
vldrw.u32

vcmla.f32 q7, q0, q1, #0

q2, [r0], #16

q7, q0, q1, #0

q1, [r1], #16

vldrw.u32

vcmla.f32

vldrw.u32

vcmla.f32 q7, q2, q1, #0

q0, [r0], #16

q7, q2, q1, #90

q1, [r1], #16

vldrw.u32

vcmla.f32

vldrw.u32

lr, 2ble

@ 1st part of the complex multiplication,

@ 1st complex vector load,
@ accumulation

@ can be overlapped with vcmla
@ 2nd part of the complex multiplication,
@ accumulation, can be overlapped with vldrw
@ 2nd complex vector load,
@ can be overlapped with vcmla
@ 1st part of the complex multiplication,

@ 1st complex vector load,
@ accumulation, can be overlapped with vldrw

@ can be overlapped with vcmla
@ 2nd part of the complex multiplication,

s0, s28, s30vadd.f32 @ real part
s1, s29, s31vadd.f32 @ imaginary part

@ accumulation, can be overlapped with vldrw
@ 2nd complex vector load,
@ can be overlapped with vcmla
@ low overhead while loop end

@ tail handling eluded

@ partial parts summation

q0, [r0], #16
@ load scheduling

q0, [r1], #16
@ 1st complex vector load
@ 2nd complex vector load

wls lr, lr, 1f @ low overhead while loop start

lsrs
vmov.i32

lr, r2, #2
q7, #0x0

@ 4 complex pair per loop handling
@ accumulator zeroing

2:

1:
Fig. 7. Codes
optimized to
interleave instructions
of different group,
allowing overlapping

8

5. Looping Optimizations
To get the most out of the data processing hardware resources, we also need to enable

efficiency in loop operations as signal processing often operates on an array of data.

Traditionally, many DSPs have Zero-Overhead-Loop supported by adding dedicated loop

counter registers and related pipeline enhancements. While the loop operations can be

extremely efficient in these DSPs, the presence of additional loop counter registers adds

complexity to software in the cases where the Zero-Overhead-Loop feature can be utilized

by multiple software contexts – e.g. between interrupt handlers and interrupted codes,

and between multiple applications when using this feature in a system with an RTOS.

In the Armv8.1-M architecture, the low-overhead-branch (LOB) extension is added to the

instruction set. This allows branch penalties to be minimized in loop operations, without

the hardware cost of a branch predictor. Some forms of these instructions are available

even without Helium, so applications running on Cortex-M55 devices without Helium

implemented can still take advantage of some of the new capabilities in the LOB extension.

The most basic form of a low-overhead loop in Armv8.1-M contains a WLS (While-Loop-

Start) and a LE (Loop-End) instruction:

Before initial loop execution, the WLS instruction checks the loop counter in R0 and branch

to the end of the loop if 0. If not, it starts the loop body and executes to LE marking the

end of the loop. The LE instruction then caches the loop information and executes the loop

body again. In the second round of iteration, since the loop information is cached internally

to the processor, the WLS and LE instructions will not be executed until the loop operation

is completed.

If an interrupt occurred during the low-overhead loop execution, the loop information

cache would be cleared and when the loop is resumed after the interrupt service, the LE

instruction needs to be executed again and restore the loop information cache again.

Fig. 8. Simple
example of LOB
instruction usage –
memory copy

9

To avoid the implication on context handling and to make the Cortex-M55 processor easy

to use, the LOB extension reuses R14 (Link Register) as loop counter, which means in the

events that an interrupt or OS context switch occurred in the middle of a low-overhead

loop, the loop counter would be saved automatically and will be restored automatically

when the loop is resumed. This also means existing C/C++ codes don’t need to be changed

to take advantage of the LOB extension, enabling better software portability.

There are other variants of low-overhead loops. For example, the DLS (Do-Loop-Start)

instruction is similar to WLS, but without the checking of loop-counter in the first loop

iteration (i.e. the first iteration always executes).

Another variant of low-overhead loop is tail predication: This includes WLSTP and DLSTP,

which need to be used with LETP – Loop-end with tail predication. In some application

codes, the number of elements to be processed is not necessary multiple of the number

of elements in a vector. To help improve the handling of this data, the tail predication

uses the number of elements to be processed as for loop control, and the loop counter

LR decrement by the number of elements in a vector instead. At the last iteration of tail

predication loops, the processing of elements inside the loop is conditionally executed.

To enable tail predication, a few extra registers are introduced:

	 �Vector Predication Status and Control Register (VPR) – contains the predication mask,

which is updated at the end of each iteration in a low-overhead loop

with tail predication

	� The Floating-Point Status and Control Register (FPSCR) introduced a new bit field

LTPSIZE to indicate the size of vector element. This is setup when executing WLSTP

or DLSTP

At the last iteration, the state of VPR contains the required lane mask (generated during

decrement of LR, and dependent on FPSCR.LTPSIZE) that allows the vector operations

to be conditionally carried out.

For example, the following code sequence is a vector scaling routing, with

–	 �r4 – the number of elements to process

–	 r0 – address of input vector

–	� r3 – address of output vector

10

vdup.16

@ Q.15 vector scaling routine

wlstp.16

vldrh.u16 q0, [r0], #16
q0, q0, q1
q0, r2

lr, 2b

vmulh.s16
vqshl.s16

q0, [r3], #16vstrh.16
letp

@ input vector load
@ vector multiplication, returns high part
@ vector scale
@ vector store
@ low overhead while loop end

q1, r1
lr, r4, lf

@ fractional part duplication
@ low overhead while loop start with tail predication

2b:

1f:Fig. 9. Simple code
for vector scaling

Fig. 10. First iteration
of simple vector
scaling with tail
predication.
All eight elements
are processed

Fig. 11. Second
iteration of simple
vector scaling with
tail predication,
only seven elements
are processed

Now let’s assume we are processing 15 elements (r4 = 15). In the first iteration, all

elements in the vector are processed:

In the second iteration, the last element in the vector is not processed:

To allow tail predication to be used by multiple software context:

	 �Exception stack frame is updated so that VPR is part of the extended exception stack

frame (this uses a reserved 32-bit space in the Armv8.0-M stack frame so that there

is no impact to existing software when moving to Armv8.1-M)

	 LTPSIZE is part of FPSCR, which is also part of the extended exception stack frame

11

As such, interrupt handlers and multiple application threads in an OS environment

can all benefit from the tail predication, without the need for additional software

support overhead.

Using low-overhead-branch extension, an Armv8.1-M processor can get the same looping

performance as in a DSP with Zero-overhead-loop support.

6. Data Type Supports
To enable the Cortex-M55 processor to be used in a wide range of signal processing

applications, Armv8.1-M introduces support for a wide range of vector data types:

	 �Vector 8-bit integer/fixed-point

	 Vector 16-bit integer/fixed-point

	� Vector 32-bit integer/fixed-point�
	 Vector 16-bit half-precision floating-point

	� Vector 32-bit single-precision floating-point

Additional instructions have been added to deal with complex data (with real and imaginary

parts), which is common in signal processing. Complex vectors data are organized with

interleaved real and imaginary parts. Helium provides native complex support for integer

and floating-point date enables efficient complex data processing.

The support of half-precision floating-point is new in Cortex-M processors. This can be

useful in a range of sensing applications where the input data precision constraints can be

relaxed, but can have a high dynamic range. One such usage is for voice and sound sensing

– in many cases the audio frontend components do not need full single-precision floating-

point support and can be implemented in half-precision without compromising algorithm

performances. Half-precision floating-point format support might also help reduce memory

size and execution cycle count required in some applications.

In addition to data types supported in common DSPs, Armv8.1-M also supports 8-bit data

type which is widely used in ML applications. Armv8.1-M supports 8-bit vector dot product,

which is the central piece for neural network computation. As a result, we see a significant

performance uplift in ML performance compared to the previous generation of Cortex-M

processors. This feature is not available in most DSPs.

12

7. Memory Access Instructions
To help with signal processing, Armv8.1-M also supports various types of interleaving

memory accesses. This requirement is common for dealing with audio data (e.g. left and

right stereo channels) and image data (e.g. RGBA, CMYK). Helium in Armv8.1-M supports

instructions for dealing with data arrangements of stride-2 and stride-4, which enables

higher performance in those use cases.

In many DSPs, dedicated hardware support is available for circular addressing and bit

reverse address. In some cases:

	 �special hardware registers are introduced in these DSPs for controlling such

address generation

	� special instructions are introduced to be used in conjunction with these special

addressing modes

Such hardware requirements in DSP can lead to the same software challenges as the

hardware registers for zero-overhead-loops, where the OS must include additional context

saving/restore to enable multiple contexts of software to use these features.

To avoid these drawbacks, Helium supports scatter-gather memory access instructions

and a range of supporting instructions to handle those operations. In short, scatter-store

and gather-load instructions allow the software to transfer multiple data between vector

registers and memory using a vector of addresses or a base address with a vector

address offset.

Fig. 12. Concept
of scatter-store
and gather-load
instructions

13

Gather-load and scatter-store are available in two different forms:

	 �Vector of offsets: VLDR {B, H, W, D}.<dt> Qd, [Rn, Qm]

	� Vector of addresses: VLDR {B, H, W, D}.<dt> Qd, [Qm. {+/-<imm>}]

Scatter-gather instructions can be used in many different ways. Helium included several

instructions to help to generate a vector of address offsets:

Instruction Usage

VBRSR For bit-reversed addressing. This is useful for FFT (Fast Fourier Transform)

VIWDUP For circular address offset generation (increment)

VDWDUP For circular address offset generation (decrement)

VIDUP Like VIWDUP but without wrapping (increment)

VDDUP Like VDWDUP but without wrapping (decrement)

For example, the VIWDUP instruction is designed to generate vector of address offsets for

circular buffer:

Different increment values can be used to provide support of various data type sizes.

Fig. 13. Implementing a
circular buffer in Helium

14

Fig. 14. Cortex-M55
memory system
design

With this arrangement, the Cortex-M55 processor can serve interrupt requests at a very

low latency, given that the vector table, program code and data memory spaces needed

by the interrupt service routines (ISR) are placed in the TCMs. The peripheral AHB allows

8. Memory System Design

Designing the instructions for optimal memory accesses for signal processing and ML is

only one part of the story. In order to support the higher data processing capability, the

processor’s memory interfaces need to be designed to cope with high throughput, and

potentially larger memory sizes are needed for some of the signal processing and ML

applications. At the same time, many Cortex-M based systems require real-time response

capability. To address this requirement, the memory system support on the Cortex-M55

processor is designed as two halves:

	 �A closely coupled memory system with I-TCM (Tightly Coupled Memory), D-TCM

and an AHB peripheral bus – supporting real-time response at high performance

	� A 64-bit AXI interface with optional I-cache and D-cache – supporting memories with

higher latency and supporting multiple outstanding transfers to maximize memory

bandwidth

A block diagram of the memory system is shown in Figure 14.

15

legacy AHB/APB peripherals to be connected to the processor and be accessed without

latency impact from the AXI interconnect at the system level.

While the Cortex-M55 processor is not super scalar, with gather-load and scatter-store,

it is possible for the processor to access two independent data addresses at the same

time. As a result, the D-TCM interface is designed as separated banks so that two data

accesses targeting different D-TCM banks can be carried out at the same time. It can also

support 64-bit accesses, and can also enable faster stacking and unstacking operations in

interrupt handling.

Meanwhile, memory blocks with higher access latency can be connected via the 64-bit AMBA

AXI master interface. With the optional I-cache and D-cache, most of the accesses to slow

memories, such as off-chip DDR and embedded flash memories, can be handled by the

caches, and the slow memories are accessed only when there is a cache miss. In this way, the

performance of the system is less likely to be penalized by the use of slower memories.

In order to fully utilize the processing capability, we don’t want the processor to spend time

transferring data between TCMs and the main memory system. As a result, a 64-bit AHB

slave port is added to allow other bus masters, such as a DMA controller, to access to the

TCMs. In this way, while the processor is processing a block of data, the processing result

for the previous block can be read out from D-TCM and the next block of input data can

be written into another location in D-TCM at the same time.

Since the processor can also access up to 64-bits of data at the same time, the D-TCM

is designed to have four 32-bit D-TCM interfaces, which are separated by bit 2 and bit 3

of the data address. In this way, the total D-TCM bandwidth is increased to 128-bit per

cycle to allow good performance for both the processor and software execution as well

as DMA transfers. If both the processor and DMA controller access the same memory

bank on the D-TCM interface, the processor has higher priority, and it is likely that

in the next cycle the processor will move on to access data in another D-TCM bank,

so the DMA access can be carried out with very little delay.

In some of the DSPs, we see dedicated memory interface ports for DSP data operations.

When combining VLIW with such memory features, it is possible to access these

memories in parallel with data processing instructions to get a higher performance. In the

development of the Helium architecture, such a feature is not considered because it:

	 �Requires special memory access instructions – which means that the data cannot

be directly accessed using standard C/C++ pointers, making software less portable.

While special C intrinsic can be introduced, the software is not portable

	� Might result in additional overhead in order to transfer data between such memory

and the main memory

16

9. Performance of the Cortex-M55
Processor

With Helium technology, the innovative pipeline design and the memory system features,

the performance of Cortex-M55 processor in signal processing and machine learning

applications is significantly better than the previous generations of Cortex-M processors.

For example, the performance of low-level DSP functions like FFT, filters (based on hand-

optimized CMSIS-DSP), the performance of the Cortex-M55 processor is over 4 times

better than Cortex-M4 on average.

Average performance per datatype for selected
CMSIS-DSP kernels vs the Cortex-M4 processor

Fig. 15. Cortex-M55
low-level signal
processing
performance

	 �Does not work with the current TrustZone architecture. TrustZone for Armv8-M

implements a range of architectural features (e.g. SAU, IDAU and TT instructions)

related to the 4GB address range to handle TrustZone security management.

However, if a separated address space is added, additional security features

are needed to support security inside those extra memories and would increase

system complexity, power and cost

While the Cortex-M55 processor does not have dedicated memory interface ports

for DSP data, with the Cortex-M55 pipeline design and the D-TCM arrangement,

we can already handle two data accesses and data processing at the same time.

The D-TCM is also a part of the standard system address space, so all data within TCMs

can be accessed using standard C/C++ codes, making it easier to use. In order to provide

TrustZone security support for the TCMs, TrustZone access filters are included on the TCM

interfaces to manage accesses generated by the processor and the DMA controller.

As the TCMs are part of the standard address space, standard TrustZone security handling

(e.g. security attribution checking) can work for TCMs in exactly the same ways as the main

memories connected via AXI.

17

DAP in Dolby Atmos Playback Processing

Bitstream Objects
Dolby Digital

Plus
or

Dolby AC-4

Decoder
Rendering and

Audio Processing

Dolby Audio
Processing

(DAP)

0.36 0.36

64%
reduc�on

0.77 0.75 0.75

1.00 1.00 1.00

Rela�ve execu�on �me
5.1 virtualiza�on to 2-ch

Rela�ve execu�on �me
5.1.2 virtualiza�on to 2-ch

(for Dolby ATMOS®)

Rela�ve execu�on �me
5.1. upmix to 5.1.2
(for Dolby ATMOS®)

Co
rt

ex
-M

4

Co
rt

ex
-M

7

Co
rt

ex
-M

55

Co
rt

ex
-M

4

Co
rt

ex
-M

7

0.38
Co

rt
ex

-M
55

Co
rt

ex
-M

4

Co
rt

ex
-M

7

Co
rt

ex
-M

55

Lo
w

er
 is

 b
e�

er

62%
reduc�on

64%
reduc�on

Virtualized
Outputs

Fig. 16. Cortex-M55
performance benefits
in Dolby Audio
Processing (DAP)

We also see great improvements at higher-level audio applications. For example, Arm

together with Dolby, have investigated the complexity of the Dolby Audio Processing (DAP)

codec running on Cortex-M55 with Helium.

From the analysis results, we see that Cortex-M55 can provide over 60% reduction in

execution time when compared to the Cortex-M4 processor.

Another area of interest is the ML processing performance. Several machine learning

algorithms have been ported to Helium, including a keyword spotting library and a CiFAR10

image classification library. From this result, we see that the Cortex-M55 processor gives

nearly ten times better performance than the Cortex-M4 processor in keyword spotting,

and almost six times better than the Cortex-M4 processor in CiFAR10 image

classification operations.

18

Fig. 17. Cortex-M55
processor performance
uplift in keyword spotting
(KWS)

Simula�on results of CNN-based KWS
algorithm on Cortex-M processors

Re
la

�v
e

pe
rf

or
m

an
ce

 u
pl

i�

10
9
8
7
6
5
4
3
2
1
0

Corte
x-M

4

Corte
x-M

33

Corte
x-M

55

Corte
x-M

4

3 convolution layer, 3 pooling layer and 1
fully-connected layer

Cortex-M55 performance results are based on RTL and C compiler
in development. Subject to change.

Cortex-M4/M7/M33 using AC6.10

0

1

2

3

4

5

6

7

8

Cortex-M4 Cortex-M33 Yamin Cortex-M7

Re
la

tiv
e

pe
rf

or
m

an
ce

 u
pl

ift

Simulation results of CIFAR-10
on Cortex-M CPUs

Cortex-M55

≈7x
higher
perf.

Efficient compute capabilities in next gen
Cortex-M

Fig. 18. Cortex-M55 processor performance
uplift in image classification (CiFAR10)

19

10. Considerations When Developing
Applications with the Cortex-M55 Processor

While the Cortex-M55 processor design enables significant performance uplift in signal

processing and machine learning applications, not every application can gain the same level

of performance boost. Since Helium technology is based on SIMD operations, it works very

well when the data processing can be vectorized. However, there is a range of application

codes that cannot be vectorized. The traditional VLIW approach, however, allows different

operations to be scheduled at different execution slots. This potentially allows some very

sequential code parts handling to be carried out quicker (e.g. variable length encoding/

decoding in audio codecs). For Arm processors, it is also possible to achieve similar

parallelism by introducing superscalar in the design. The Cortex-M55 processor, however,

is not a superscalar processor, and therefore, does not have this capability. Nevertheless,

with limited dual-issue capability in the Cortex-M55 processor and various new features

in Armv8.1-M architecture (e.g. low-overhead loops, new conditional execution

instructions, 64-bit shifts), scalar performance has been improved in various areas.

With VLIW architecture, it is possible to gain higher performance by increasing the width

of the pipeline. For example, high-end DSPs have four or five parallel execution slots

to enable high performance. This, however, also means a much larger silicon area, power

and instruction memory bandwidth. For instance, some DSPs can consume up to 128-bit

of instructions per cycle, while the Cortex-M55 processor can only execute 32-bit

of instructions per cycle.

In order to get a higher efficiency, the datapath of the Cortex-M55 processor is designed

to be 64-bit, even though the Helium vector is 128-bit. By interleaving different instruction

groups, we can avoid hardware resource conflicts and achieve the same level

of performance as with a 128-bit wide datapath. However, there are occurrences where

we cannot avoid pipeline conflicts. For example, if two vector memory access instructions

are next to each other, then the pipeline cannot allow overlapping of instruction execution

and results in pipeline bubbles.

While the D-TCM allows the processor to access two sets of data at the same time,

due to the nature of the memory bank partitioning, two data accesses to the same memory

bank cannot be carried out at the same time. As a result, when defining data structures

or creating algorithms that use interleaved data accesses, software developers need

to be careful about the data memory layout and access sequences to avoid access conflicts.

The Cortex-M55 processor supports 8 vector registers. While this could appear as a

limitation, our internal studies over a broad range of critical DSP and ML routines proved

20

that the amount of vector registers does not compromise targeted performance. For cases

where more vector registers are needed, this limitation can be mitigated by judicious

spilling where vector load/store can be overlapped with arithmetic operations with no or

small penalty. Some of DSP architectures support 16 or even 32 vector registers, which

makes instruction scheduling much easier, at a cost of larger silicon area and power. Since

the Cortex-M55 processor is designed to target low-power embedded systems, this is an

essential trade-off area.

To help software developers to utilize the capabilities of the Cortex-M55 processor, the

CMSIS-DSP and CMSIS-NN libraries are being updated and optimized to support new

features in Armv8.1-M architecture. With these libraries, existing applications utilizing

CMSIS-DSP and CMSIS-NN can immediately take advantage of the Helium feature by

switching over to the latest libraries. Additional optimization features are also being

introduced by various C compilers. For example, auto-vectorization support for Helium is

available in latest Arm Compiler and Arm toolchains.

11. Summary

In summary, we see that with Helium technology and the Cortex-M55 processor design,

it is possible to create a highly capable signal processing and machine learning engine

on top of a traditional general-purpose embedded processor architecture. Various features

are introduced in Helium and the Cortex-M55 processor to match a range of traditional

DSP features:

DSP features Helium

Zero overhead loops Low-overhead-branch extensions

Complex data processing Complex data processing

Circular buffer

Scatter-gather memory access with

instruction for bit-reverse address

generation

Bit reverse addressing

Scatter-gather memory access with

instruction for bit-reverse address

generation

Dedicated DSP data memory interface
Multiple TCM interfaces to support vector

memory accesses and pipeline optimization

Interleave data accesses Interleave data acccesses

Table 1. Comparison
of features on
DSP to Helium
and Cortex-M55
processor features

21

With all these features and innovative design techniques, the Cortex-M55 processor can

match the performance of mid-range dual-MAC DSP (i.e. products that process ~64-bit

of MAC per cycle) in a range of signal processing workloads. The Cortex-M55 processor

is also designed for machine learning applications, whereas support for machine learning

data types is rare in the mid-range and low-end DSP products. As a result, the Cortex-M55

processor can outperform a range of DSPs in neural network processing.

There are, however, a range of design considerations when creating a processor design

based on Helium. In addition to the complexity of the overlapping pipeline, the memory

system design also needs to be optimized to enable the signal processing and machine

learning workloads. To make the most of Helium, software developers also need to be

aware of some of the limitations of the architecture during software optimization.

Overall, Helium and the Cortex-M55 processor design are a good balance of performance

and energy efficiency, and at the same time satisfies the requirements from embedded

applications including real-time responsiveness, security and ease-of-use.

Click here for more information about the Cortex-M55 processor and to explore

further resources.

Acknowledgement

I would like to express my gratitude to Dolby for the collaboration and sharing of various

data that helped us which help us to investigate Cortex-M55 processor performance,

Fabien Klein in Arm embedded software team for his help in preparing various data

and the review, Arm research team for creating the Helium extension, and Cortex-M55

processor design team for make Helium technology possible.

 	 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the
information contained in, or the product described in, this document may be adapted or reproduced in any material form except with
the prior written permission of the copyright holder. The product described in this document is subject to continuous developments
and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied
or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document
is intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable
for any loss or damage arising from the use of any information in this document or any error or omission in such information.

	 © Arm Ltd. 2020

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m55

